

Series Inverter Drives

User Manual

IMO

Contents

1. Safety Precautions	8
1.1. Safety declaration.....	8
1.2. Safety level definition.....	8
1.3. Personnel requirements.....	8
1.4. Safety guidelines.....	9
2. Product Overview.....	12
2.1. Product nameplate and model	12
2.2. Product specifications	12
2.3. Product ratings	14
2.4. Product heat dissipation	16
2.5. Product dimensions and weight	17
2.6. Product structure	18
2.7. System configuration	19
2.8. Quick startup	21
3. Mechanical Installation.....	22
3.1. Unpacking inspection	22
3.2. Preparing.....	22
3.2.1. Installation environment and site.....	22
3.2.2. Installation direction	23
3.2.3. Installation space	24
3.3. Installation and uninstallation.....	25
3.3.1. Installation	26
3.3.2. Disassembly.....	29
4. Electrical Installation	31
4.1. Insulation inspection	31
4.2. Checking compatible grounding systems	31
4.2.1. EMC filter grounding capacitor	31
4.2.2. Ground-to-phase VDR.....	32
4.2.3. When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems	32
4.2.4. Guidelines for installing the inverter in TT systems	33
4.2.5. Identifying grid grounding systems	34
4.2.6. Disconnecting the internal EMC filter or VDR, for frames A to E	34
4.3. Cable selection and routing	36
4.3.1. Cable selection.....	36

4.3.2. Cable arrangement	38
4.4. Main circuit wiring.....	39
4.4.1. Main circuit wiring.....	39
4.4.2. Main circuit terminals	39
4.4.3. Wiring procedure	42
4.5. Control circuit wiring.....	44
4.5.1. Control circuit wiring.....	44
4.5.2. Control circuit terminals	45
4.5.3. Input/output signal wiring	46
4.6. Power distribution protection	51
5. Keypad Operation Guidelines	53
5.1. Keypad introduction	53
5.2. Local LED keypad display and operation.....	53
5.2.1. Keypad panel.....	53
5.2.2. Keypad display.....	55
5.2.3. Operation procedure.....	56
6. Commissioning.....	59
6.1. Motor parameter setting.....	60
6.1.1. Motor type selection	60
6.1.2. Rated motor parameter setting.....	60
6.1.3. Motor switchover	61
6.2. Parameter autotuning setting	63
6.2.1. Motor parameter autotuning.....	63
6.2.2. Motor inertia identifying	64
6.3. Running command selection	65
6.4. Frequency setting	69
6.4.1. Combination of frequency setting source.....	71
6.4.2. Frequency setting method.....	72
6.4.3. Frequency fine-tuning	84
6.5. Speed control mode selection.....	85
6.6. Torque setting method selection	86
6.6.1. Torque setting method selection.....	86
6.6.2. Method for switching between speed control and torque control	87
6.7. Start/stop settings	88
6.7.1. Start settings	88
6.7.2. Stop settings.....	90

6.7.3.	Power-off restart	93
6.8.	Control performance regulation	95
6.8.1.	V/F control performance optimization.....	95
6.8.2.	Vector control performance optimization.....	102
6.9.	Input and output.....	107
6.9.1.	Digital input and output.....	107
6.9.2.	Analog input and output terminal functions	120
6.9.3.	High-speed pulse input and output terminal functions	125
6.10.	RS485 communication	129
6.11.	Monitoring parameters.....	132
6.11.1.	Group P07—Human-machine interface	132
6.11.2.	GroupP17—Basic status viewing	136
6.12.	Protection parameter setting.....	141
6.12.1.	Overspeed stall protection.....	141
6.12.2.	Current-limit protection	143
6.12.3.	Frequency decrease at sudden power failure	144
6.12.4.	Cooling fan control.....	145
6.12.5.	Dynamic braking	146
6.12.6.	Safe torque off	147
6.13.	Typical applications	147
6.13.1.	Counting	147
6.13.2.	Sleep and wakeup.....	148
6.13.3.	Switchover between FWD run and REV run.....	149
6.13.4.	Jump frequency	151
6.13.5.	Wobbling frequency	152
7.	Communication.....	154
7.1.	Standard communication interface	154
7.2.	Communication data address	154
7.2.1.	Function parameter address.....	154
7.2.2.	Non-function parameter address.....	155
7.3.	Modbus networking	158
7.3.1.	Network topology.....	158
7.3.2.	RTU mode.....	159
7.3.3.	RTU command code.....	162
7.3.4.	Fieldbus scale	167
7.3.5.	Error message response.....	168

7.3.6. Communication commissioning.....	169
8. Fault Handling	171
8.1. Fault indication and reset.....	171
8.2. Faults and solutions	171
8.2.1. Common faults and solutions	171
8.2.2. Other status	180
8.3. Countermeasures on common interference	180
8.3.1. Interference problems of meter switch and sensors	180
8.3.2. Interference on RS485 communication	181
8.3.3. Failure to stop and indicator shimmering due to motor cable coupling	182
8.3.4. Leakage current and interference on RCD	183
8.3.5. Live device housing.....	184
9. Inspection and Maintenance	185
9.1. Daily inspection and regular maintenance	185
9.2. Cooling fan replacement.....	187
9.3. Reforming	187
Appendix A Expansion card.....	190
A.1 Model definition.....	190
A.2 Specifications	190
A.3 Protocol parameter.....	192
A.4 Indicator.....	193
A.5 Expansion card installation and wiring.....	197
A.5.1 Expansion card installation procedure	197
A.5.2 Expansion card wiring.....	197
A.6 Commissioning	199
Appendix B Technical Data	203
B.1 Derating due to temperature.....	203
B.2 Derating due to altitude.....	205
B.3 Derating due to carrier frequency.....	205
B.4 Grid specifications.....	207
B.5 Motor connection data.....	207
B.5.1 Motor cable length for normal operation.....	207
B.5.2 Motor cable length for EMC.....	208
Appendix C Application Standards.....	210
C.1 List of application standards	210

C.2 CE/TUV/UL certification	210
C.3 EMC compliance declaration	210
C.4 EMC product standard	210
Appendix D Dimension Drawings	212
D.1 Keypad structure	212
D.2 Product outline dimensions	212
D.3 Flange mounting dimensions	216
Appendix E Peripheral Accessories	218
E.1 Cable	218
E.1.1 Power cable	218
E.1.2 Control cable	219
E.2 Breaker, fuse, and electromagnetic contactor	220
E.3 Optional Accessories	223
E.3.1 Reactor	223
E.3.2 Braking component	224
E.3.3 External keypad and mounting bracket	226
E.3.4 DIN rail mounting bracket	227
E.3.5 Accessory list	228
Appendix F STO Function	229
F.1 Safety standards	229
F.2 Safety function description	229
F.3 Risk assessment	230
F.4 STO wiring	231
F.5 STO function terminal description	232
F.6 STO function logic table	232
F.7 STO channel delay description	233
F.8 Acceptance test	233
Appendix G Function Parameter List	235
G.1 Group P00—Basic functions	235
G.2 Group P01—Start and stop control	239
G.3 Group P02—Parameters of motor 1	244
G.4 Group P03—Vector control of motor 1	248
G.5 Group P04—V/F control of motor 1	256
G.6 Group P05—Input terminal functions	261
G.7 Group P06—Output terminal functions	267
G.8 Group P07—Human-machine interface	274

G.9 Group P08—Enhanced functions	282
G.10 Group P09—PID control.....	293
G.11 Group P10—Simple PLC and multi-step speed control.....	297
G.12 Group P11—Protection parameters	300
G.13 Group P13—SM control	307
G.14 Group P14—Serial communication	309
G.15 Group P16—Customized communication functions	314
G.16 Group P17—Status viewing	319
G.17 Group P23—Communication expansion function group 1	325
G.18 Group P24—Communication expansion function group 2	327
G.19 Group P29—Expansion card status viewing	330
G.20 Group P34—Parameters of motor 2	331
G.21 Group P35—Vector control of motor 2	335
G.22 Group P36—V/F control of motor 2	344

1. Safety Precautions

1.1. Safety declaration

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the product. Failure to do so may result in equipment damage, personal injury, or death.

We shall not be liable or responsible for any equipment damage or physical injury or death caused due to failure to follow the safety precautions.

1.2. Safety level definition

To ensure personal safety and prevent property damage, pay close attention to the safety symbols and warnings described in this manual.

Symbol	Name	Description
	Danger	Severe personal injury or even death can result if related safety requirements are not followed.
	Electric shock	Severe personal injury or death may occur if related safety requirements are not followed. As high voltage remains in the bus capacitor after power-off, wait at least 5 minutes (depending on the warning label on the device) before touching internal components to prevent electric shock.
	Warning	Personal injury or equipment damage may occur if related safety requirements are not followed.
	Electrostatic discharge	Equipment or internal component damage may occur if related safety requirements are not followed.
	Hot sides	Contact may cause burns if related safety requirements are not followed.
Note	Note	Minor personal injury or equipment damage may occur if related safety requirements are not followed.

1.3. Personnel requirements

Only trained and qualified professionals may operate this equipment.

Operators must:

- Have received professional electrical and safety training.
- Hold valid certification.
- Be familiar with all procedures and requirements for installation, commissioning, operation, and maintenance.
- Be capable of handling emergencies safely and effectively based on their experience.

1.4. Safety guidelines

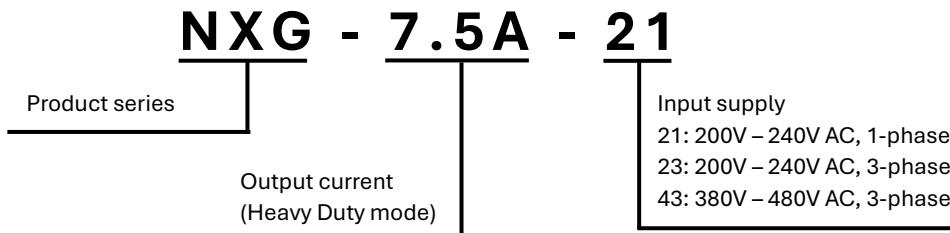
General principles									
	<ul style="list-style-type: none"> Only trained and qualified personnel are permitted to perform operations. Do not perform wiring, inspection, or component replacement while the power supply is on. Before performing these tasks, ensure that all input power supplies are disconnected, and wait at least the time indicated on the inverter label. The minimum waiting times are as follows: <table border="1"> <thead> <tr> <th>Model</th><th>Minimum waiting time</th></tr> </thead> <tbody> <tr> <td>1PH 220V 0.2–4kW</td><td>5 minutes</td></tr> <tr> <td>3PH 220V 0.2–15kW</td><td>5 minutes</td></tr> <tr> <td>3PH 380V 0.4–22kW</td><td>5 minutes</td></tr> </tbody> </table>	Model	Minimum waiting time	1PH 220V 0.2–4kW	5 minutes	3PH 220V 0.2–15kW	5 minutes	3PH 380V 0.4–22kW	5 minutes
Model	Minimum waiting time								
1PH 220V 0.2–4kW	5 minutes								
3PH 220V 0.2–15kW	5 minutes								
3PH 380V 0.4–22kW	5 minutes								
	<ul style="list-style-type: none"> Do not modify the inverter without authorization. Unauthorized modification may result in fire, electric shock, or injury. The inverter must not be used as an emergency stop device. The inverter must not be used as an emergency brake for the motor; a separate mechanical braking device is required. Prevent screws, cables, and other conductive materials from falling into the inverter. 								
	<ul style="list-style-type: none"> The base of the inverter may become hot during operation. Do not touch it to avoid burns. 								
	<ul style="list-style-type: none"> The internal components of the inverter are sensitive to electrostatic discharge. Use proper ESD protection when handling or servicing. 								

Delivery	
	<ul style="list-style-type: none"> Use appropriate tools to transport the inverter to avoid damage. Wear protective gear such as safety shoes and work uniforms to prevent injury or death. Protect the inverter from physical shock and vibration. Do not carry the inverter with its front cover, as it may detach.

Installation	
	<ul style="list-style-type: none"> Do not install the inverter on or near flammable materials. Do not install a damaged or incomplete inverter. Do not allow the inverter to come into contact with damp objects or body parts to prevent electric shock.
	<ul style="list-style-type: none"> The installation site must be away from children and other public places. For details, see section Installation environment and site.

Installation	
	<ul style="list-style-type: none"> • Connect the optional braking parts (such as braking resistors, braking units or feedback units) according to the wiring diagrams. • As inverter leakage current caused during running may exceed 3.5mA, ground properly and ensure the grounding resistance is less than 10Ω. The conductivity of PE grounding conductor is the same as that of the phase conductor. • L1, L2, and L3 are power input terminals; U, V, and W are motor output terminals. Connect these cables correctly to prevent inverter damage. • When installing the inverter in an enclosed space (such as a cabinet), ensure the use of protective housing (fireproof, electrical, or mechanical) that meet the required IP rating. The IP rating must comply with relevant IEC standards and local regulations.
Commissioning	
	<ul style="list-style-type: none"> • The inverter may start automatically when power-off restart is enabled (P01.21 = 1). Keep clear of the inverter and motor during power-up.
	<ul style="list-style-type: none"> • Avoid frequent switching of the inverter input power supply. • If the inverter has been unused for an extended period, perform capacitor reforming (see Section 9.3 Reforming), inspection, and a test run before reuse.
Operation	
	<ul style="list-style-type: none"> • Close the inverter front cover before operation; otherwise, electric shock may occur. • High voltage is present inside the inverter during operation. Do not perform any operations other than keypad setup while running. • The inverter control terminals operate on extra-low voltage (ELV) circuits. Prevent them from contacting accessible terminals of other devices. <p>When operating a synchronous motor, in addition to the above precautions, ensure the following:</p> <ul style="list-style-type: none"> • All input power supplies (main and control) are disconnected. • The synchronous motor has stopped, and the output voltage of the inverter is below 36V. • Wait at least for the specified discharge time after the motor has stopped. • Ensure the synchronous motor cannot restart due to external loads; it is recommended to install an effective external braking device or disconnect the electrical connection between the motor and the inverter.

Maintenance	
	<ul style="list-style-type: none">• Do not perform maintenance or replace components while the power is on to avoid electric shock.• Keep the inverter and its components away from combustible materials and ensure no such materials adhere to them.
	<ul style="list-style-type: none">• Use proper anti-static precautions when handling the inverter and its internal parts.
	<ul style="list-style-type: none">• Do not perform insulation resistance or dielectric withstand tests on the inverter.• Do not measure control circuits using a megohmmeter.
Note	Use proper torque when tightening screws.


2. Product Overview

2.1. Product nameplate and model

Each inverter includes a nameplate showing key product details and relevant certification marks.

IMO Precision Controls Ltd Frobisher way, Hatfield, UK, AL10 9TG www.imopc.com		IMO
Jaguar NXG Series Inverter		
Model	NXG-7.5A-21	
	Heavy Duty (HD)	Normal Duty (ND)
Power	1.5kW (2HP)	2.2kW (3HP)
Input	1PH 200-240V 50/60Hz 14.2A	1PH 200-240V 50/60Hz 18.8A
Output	3PH 0V-V _{in} 0-400Hz 7.5A	3PH 0V-V _{in} 0-400Hz 9.8A
Loss	2.16% (90,100) Level IE2	2025
IP20 2025 Made in China	S/N XXXXXXXXXXXXXX	

Product nameplate

2.2. Product specifications

Item	Specifications	
Input	Input voltage (V)	AC 1PH 200V–240V AC 3PH 200V–240V AC 3PH 380V–480V
	Input current (A)	See section 2.3 Product ratings.
	Input frequency (Hz)	50Hz or 60Hz; Allowed range: 47–63Hz
Output	Output voltage (V)	0–Input voltage
	Output current (A)	See section 2.3 Product ratings.
	Output power (kW)	See section 2.3 Product ratings.
	Output frequency (Hz)	0–599Hz
Control performance	Control mode	V/F control (V/F), and Sensorless vector control (SVC)
	Motor	Asynchronous motor (AM) and Synchronous motor (SM)
	Speed ratio	For AMs: 1: 100 (SVC)

Item	Specifications
Performance	For SMs: 1: 50 (SVC)
	Speed control accuracy: $\pm 0.2\%$ (SVC)
	Speed fluctuation: $\pm 0.3\%$ (SVC)
	Torque response: < 10ms (SVC)
	Torque control accuracy: 5% (SVC)
	Starting torque: For AMs: 0.5Hz/200% (SVC) For SMs: 2.5 Hz/150% (SVC)
	Overload capacity: For heavy-load models: 150%/60s, 180%/10s, 200%/1s For light-load models: 110%/60s, 150%/10s, 180%/1s
External Interface	Analog input: Two analog inputs: AI1: 0–10V/0–20mA AI2: -10–10V/0–20mA Full-scale accuracy of 1%
	Analog output: One analog output: AO1: 0–10V/0–20mA Full-scale accuracy of 1%
	Digital input: Four regular inputs; max. frequency: 1kHz One high-speed input. Max. frequency: 50kHz Both NPN and PNP are supported, with PNP as the default. DI4 can be switched to provide the PTC function through the toggle switch.
	Digital output: One high-speed digital output. Max frequency: 50kHz Optional standard digital output, supporting both PNP and NPN modes.
	Relay output: One relay output RO1A: NO; RO1B: NC; RO1C: common Contact capacity: 3A/AC 250V, 1A/DC 30V
	Type-C interface: Powered by connecting to a PC through USB, allowing quick parameter viewing and configuration through host controller software without requiring the main power supply.
	Communication interface: RS485 communication, supporting the Modbus RTU communication protocol.
	Keypad display: Five-digit digital tube display, with six keys
Environment requirements	Running temperature: -10–+50°C, no derating for normal duty at 40°C, no derating for heavy duty at 50°C Note: Refer to section B.1 Derating due to temperature for use at heavy duty above 50°C; refer to section B.1 Derating due to temperature for use at normal duty above 40°C.

Item		Specifications			
	Storage temperature	-20°C–70°C			
	Transport temperature	-20°C–70°C			
	Altitude	Up to 2000m (6562ft) Derating is not required for use up to 1000m (3281ft). Above 1000m (3281ft), derate by 1% for every increase of 100m (328.1ft).			
	Relative humidity (RH)	<95%RH, no condensation			
	Vibration	<0.6g			
	Pollution level	3C2, 3S2, PD2			
	Ingress protection (IP) rating	IP20			
	Overvoltage category	OVC III			
Other	Braking unit	Standard built-in braking unit			
	Product certification*	UL CE			
	Safety function*	TUV (SIL3)			
	Mounting method	Wall mounting, DIN rail mounting, and flange mounting Note: Only models in frames A and B support rail mounting, which requires the selection of related options; only models in frames C, D, and E support flange mounting, which requires the selection of related options.			
	Cooling method	220V voltage class: natural cooling for 0.75kW and lower 380V voltage class: natural cooling for 1.1kW and lower Others: Forced air cooling			

2.3. Product ratings

Product model	Constant Torque (Heavy Duty)				Variable Torque (Normal Duty)			
	Output power		Input current (A)	Output current (A)	Output power		Input current (A)	Output current (A)
	kW	HP			kW	HP		
AC 1PH 200V–240V								
NXG-1.5A-21	0.2	0.27	3.9	1.5	0.4	0.5	5.2	2
NXG-2.5A-21	0.4	0.5	5.3	2.5	0.75	1	7.4	3.3

Product model	Constant Torque (Heavy Duty)				Variable Torque (Normal Duty)			
	Output power		Input current (A)	Output current (A)	Output power		Input current (A)	Output current (A)
	kW	HP			kW	HP		
NXG-4.2A-21	0.75	1	8.8	4.2	1.1	1.5	11	5.1
NXG-6.5A-21	1.1	1.5	13.2	6.5	1.5	2	13.4	7.5
NXG-7.5A-21	1.5	2	14.2	7.5	2.2	3	18.8	9.8
NXG-10A-21	2.2	3	20.6	10	3	4	23.8	12.5
NXG-16A-21	4	5.5	32	16	-	-	-	-
AC 3PH 200V-240V								
NXG-1.5A-23	0.2	0.27	2.2	1.5	0.4	0.5	3.3	2
NXG-2.5A-23	0.4	0.5	4.1	2.5	0.75	1	5.6	3.3
NXG-4.2A-23	0.75	1	6.8	4.2	1.1	1.5	8.1	5.1
NXG-6.5A-23	1.1	1.5	10.3	6.5	1.5	2	11.5	7.5
NXG-7.5A-23	1.5	2	9.3	7.5	2.2	3	11.8	9.8
NXG-10A-23	2.2	3	12	10	3	4	13.7	12.5
NXG-16A-23	4	5.5	20	16	5.5	7.5	26	21
NXG-20A-23	5.5	7.5	21.7	20	7.5	10	28	26
NXG-30A-23	7.5	10	33	30	11	15	43	39
NXG-42A-23	11	15	44	42	-	-	-	-
NXG-55A-23	15	20	60	55	18.5	25	72	64
AC 3PH 380V-480V								
NXG-1.5A-43	0.4	0.5	2.7	1.5	0.75	1	3.9	2
NXG-2.5A-43	0.75	1	4.5	2.5	1.1	1.5	6	3.3
NXG-3A-43	1.1	1.5	5.8	3	1.5	2	6.9	3.7
NXG-4.2A-43	1.5	2	7.6	4.2	2.2	3	8.6	5.5
NXG-5.5A-43	2.2	3	9.6	5.5	3	4	10.4	7
NXG-7.5A-43	3	4	11.4	7.5	4	5.5	12.8	9.5
NXG-9.5A-43	4	5.5	15.3	9.5	5.5	7.5	17.2	11.5
NXG-14A-43	5.5	7.5	22.1	14	7.5	10	28.1	18
NXG-18.5A-43	7.5	10	25	18.5	11	15	26.8	21
NXG-25A-43	11	15	36	25	15	20	46	32
NXG-32A-43	15	20	46	32	18.5	25	55	38
NXG-38A-43	18.5	25	57	38	22	30	68	45
NXG-45A-43	22	30	62	45	30	40	72	58

Note: The inverter input current is measured in cases where the input voltage is 220V/380V without additional reactors.

2.4. Product heat dissipation

Product model	Entire machine standby power dissipation (W)	Entire machine full load power dissipation (W)	Heat dissipation (BTU/hr)	Air rate (m ³ /h)	Air rate (CFM) (ft ³ /min)
AC 1PH 200V-240V					
NXG-1.5A-21	7	19	65	-	-
NXG-2.5A-21	7	27	92	-	-
NXG-4.2A-21	7	45	154	-	-
NXG-6.5A-21	7	67	229	20	12
NXG-7.5A-21	7	74	253	20	12
NXG-10A-21	7	112	382	20	12
NXG-16A-21	11	185	631	20	12
AC 3PH 200V-240V					
NXG-1.5A-23	7	19	65	-	-
NXG-2.5A-23	7	27	92	-	-
NXG-4.2A-23	7	42	143	-	-
NXG-6.5A-23	7	60	205	20	12
NXG-7.5A-23	7	67	229	20	12
NXG-10A-23	7	84	287	20	12
NXG-16A-23	11	137	467	50	30
NXG-20A-23	11	182	621	50	30
NXG-30A-23	14	260	887	122	72
NXG-42A-23	14	396	1351	122	72
NXG-55A-23	16	621	2119	153	90
AC 3PH 380V-480V					
NXG-1.5A-43	9	29	99	-	-
NXG-2.5A-43	9	40	137	-	-
NXG-3A-43	9	45	154	-	-
NXG-4.2A-43	9	60	205	20	12
NXG-5.5A-43	9	81	277	20	12
NXG-7.5A-43	9	104	355	20	12
NXG-9.5A-43	9	147	502	20	12
NXG-14A-43	11	208	710	50	30
NXG-18.5A-43	11	248	846	50	30
NXG-25A-43	20	335	1143	122	72
NXG-32A-43	20	468	1197	122	72
NXG-38A-43	20	503	1716	153	90
NXG-45A-43	20	577	1969	153	90

2.5. Product dimensions and weight

Product model	Frame	Outline dimensions W×H×D (mm/in)	Packaging dimensions W×H×D (mm/in)	Net weight (kg)	Gross weight (kg)
AC 1PH 200V-240V					
NXG-1.5A-21	A	60×190×155/ 2.36×7.48×6.1	230×90×190/ 9.05×3.54×7.48	1.23	1.34
NXG-2.5A-21					
NXG-4.2A-21					
NXG-6.5A-21	B	70×190×155/ 2.75×7.48×6.1	230×90×190/ 9.05×3.54×7.48	1.27	1.47
NXG-7.5A-21					
NXG-10A-21	C	90×235×155/ 3.54×9.25×6.1	278×150×245/ 10.9×5.9×9.6	2.05	2.259
AC 3PH 200V-240V					
NXG-1.5A-23	A	60×190×155/ 2.36×7.48×6.1	230×90×190/ 9.05×3.54×7.48	1.23	1.34
NXG-2.5A-23					
NXG-4.2A-23					
NXG-6.5A-23	B	70×190×155/ 2.75×7.48×6.1	230×90×190/ 9.05×3.54×7.48	1.23	1.34
NXG-7.5A-23					
NXG-10A-23					
NXG-16A-23	C	90×235×155/ 3.54×9.25×6.1	278×150×245/ 10.9×5.9×9.6	2.05	2.259
NXG-20A-23					
NXG-30A-23	D	130×250×185/ 5.11×9.84×7.28	325×190×235/ 12.8×7.5×9.3	3.55	4.05
NXG-42A-23					
NXG-55A-23	E	160×300×190/ 6.29×11.81×7.48	413×255×300/ 16.3×10×11.8	4.90	5.40
AC 3PH 380V-480V					
NXG-1.5A-43	A	60×190×155/ 2.36×7.48×6.1	230×90×190/ 9.05×3.54×7.48	1.23	1.34
NXG-2.5A-43					
NXG-3A-43					
NXG-4.2A-43	B	70×190×155/ 2.75×7.48×6.1	230×90×190/ 9.05×3.54×7.48	1.23	1.34
NXG-5.5A-43					
NXG-7.5A-43					
NXG-9.5A-43					
NXG-14A-43	C	90×235×155/ 3.54×9.25×6.1	278×150×245/ 10.9×5.9×9.6	2.05	2.259
NXG-18.5A-43					
NXG-25A-43	D	130×250×185/ 5.11×9.84×7.28	325×190×235/ 12.8×7.5×9.3	3.55	4.05
NXG-32A-43					
NXG-38A-43	E	160×300×190/6. 29×11.81×7.48	413×255×300/ 16.3×10×11.8	4.90	5.40

Note:

- The product frames are divided into A, B, C, D, and E.
- The difference between the weight in the table and the actual weight is $\leq 3\%$.

2.6. Product structure

Warning	
	<ul style="list-style-type: none"> • The Type-C port serves as a monitoring and debugging interface. • The external keypad cannot be used when the Type-C port is connected.

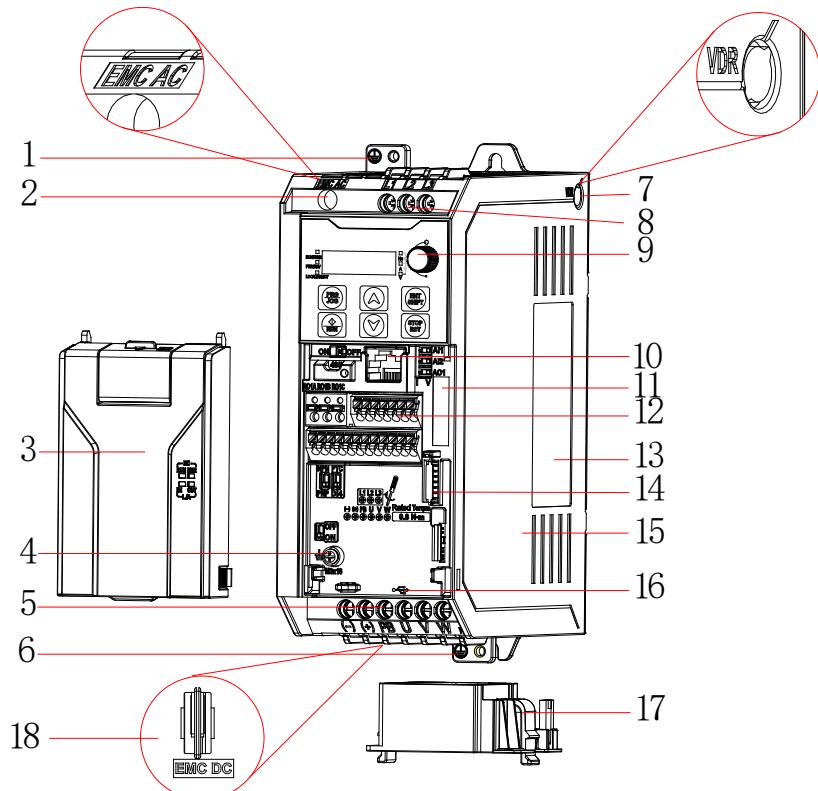


Figure 2 1 Product structure

No.	Component	No.	Component
1	Input safety protection grounding terminal	10	RJ45 network port
2	EMC AC screw	11	Model bar code
3	Cover	12	Control board terminal
4	Signal grounding terminal (PE)	13	Nameplate
5	Output terminal functions	14	Expansion card interface
6	Output safety protection grounding terminal	15	Housing
7	VDR screw	16	Type-C interface (control board)
8	Input terminal functions	17	Cooling fan
9	Potentiometer knob	18	EMC DC clip

Note: The positions of EMC AC screw, VDR screw, and EMC DC clip are not exactly the same for inverters in different frames. For details, see Figure 4-1, Figure 4-2, and Figure 4-3.

2.7. System configuration

When using the inverter to drive a motor as part of a control system, various electrical devices must be installed on both the input and output sides of the inverter to ensure stable and reliable system operation.

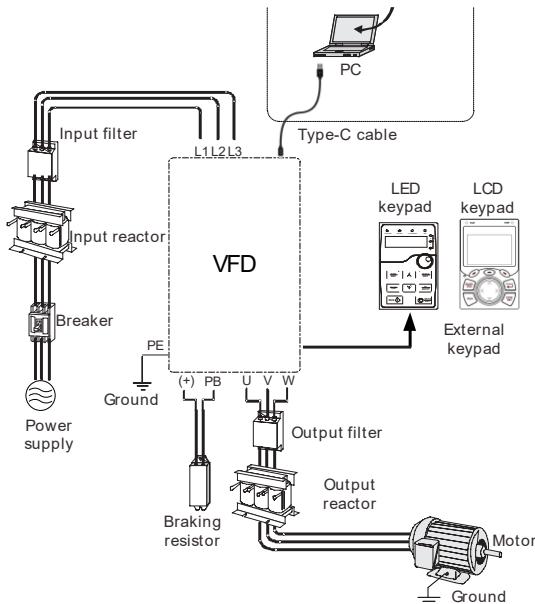


Table 2-1 System configuration

Component	Position	Description
	Breaker	Provides protection against electric shock and ground faults that may cause current leakage or fire. Select residual-current circuit breakers (RCCBs) that are suitable for use with inverters and capable of limiting high-order harmonics. The rated residual operating current for each inverter should be greater than 30 mA.
	Input Reactor	(Optional) Accessory used to improve the input-side power factor and to suppress high-order harmonic currents.
	Output Reactor	(Optional) Accessory used to extend the effective transmission distance between the inverter and the motor. It effectively suppresses transient high voltage generated during IGBT switching operations within the inverter.
	Input Filter	(Optional) Accessory used to reduce electromagnetic interference (EMI) generated by the inverter that could be transmitted to the public power grid through the power cable.
	Output Filter	Adjacent to the inverter output terminals

Component	Position	Description
		<p>Install the input filter as close as possible to the inverter's input terminals.</p> <p>(Optional) Output filter: Accessory used to suppress EMI generated in the output wiring area of the inverter.</p> <p>All product series comply with the conductivity and emission limits specified in IEC/EN 61800-3 Category C3 for power drive systems. Optional external filters may be used to meet IEC/EN 61800-3 Category C2 requirements.</p> <p>Note: Follow the technical requirements provided in the appendix for assembling motors, motor cables, and filters.</p>
	<p>Braking resistor</p> <p>Between the inverter main circuit terminals (+) and PB</p>	<p>Accessories used to dissipate the regenerative energy of the motor and shorten the deceleration (DEC) time.</p> <ul style="list-style-type: none"> Braking unit: Built-in (only an external braking resistor is required). Braking resistor: Optional external component applicable to all models.
	<p>Host controller Software</p> <p>Installed on the host controller for inverter management.</p>	<p>IMO Workshop software is used to configure and monitor the inverter. Its main functions include:</p> <ul style="list-style-type: none"> Monitor multiple inverters. Set and monitor function parameters; upload and download function parameters in batches. View the modified function codes, compare the default values, follow function codes, and search function codes View and follow state parameters View the real-time faults and historical faults Display function codes in configuration mode Control the start/stop and forward/reverse running of the device View oscilloscope curve, save and playback waveform data, operate the waveform by cursor, and simulate waveform data.

Component	Position	Description
		The software can be downloaded from our website: https://www.imopc.com .

2.8. Quick startup

Task	Reference
1. Unpacking inspection.	See section 3.1 Unpacking inspection.
2. Check whether the inverter connected load and power supply match.	See section 2.1 Product nameplate and model.
3. Check the installation environment.	See section 3.2 Preparing.
4. Install the inverter on the wall/in the cabinet.	See section 3.3 Installation.
5. Wiring.	See chapter 4 Electrical installation.
6. Commission the inverter.	See chapter 6 Commissioning.

3. Mechanical Installation

3.1. Unpacking inspection

After receiving the product, perform the following inspections to ensure safe and proper use.

- Check the package

Before unpacking, inspect the product packaging for any damage or abnormalities, such as dents, tears, dampness, water stains, or deformation.

After unpacking, check the interior of the packaging box for signs of moisture or other irregularities.

- After unpacking, check for the following:

The equipment enclosure is free from cracks or other damage.

All components (including the inverter, accessories, and user manual) are present and complete.

The nameplate and labels on the product match the model and specifications of your order.

3.2. Preparing

Only trained and qualified personnel are permitted to perform the operations described in this chapter.

Read the following installation preparation instructions carefully before proceeding to ensure smooth installation and to prevent personal injury or equipment damage.

Warning	
	<ul style="list-style-type: none"> • Follow the instructions provided in Section 1.4 – Safety Guidelines. • Ensure that the inverter power supply is completely disconnected before installation. If the inverter was previously energized, disconnect the power and wait at least the time specified on the inverter label. Verify that the POWER indicator is off before proceeding. • The installation of the inverter must comply with all applicable local laws and regulations. • IMO assumes no liability for any installation that violates local laws or regulatory requirements.

3.2.1. Installation environment and site

Environmental requirements

Environment	Requirement
Temperature	<ul style="list-style-type: none"> • -10–+50°C • There is no sudden temperature change. • When the inverter is installed in a closed space, such as control cabinet, use a cooling fan or air conditioner for temperature adjustment if necessary. • When the temperature is too low, if you want to use the inverter that has been idled for a long time, wait until the inverter reaches the operating temperature before use.

Environment	Requirement
	time, install an external heating device before the use to eliminate the freeze inside the inverter. Otherwise, the inverter may be damaged.
Relative humidity (RH)	<ul style="list-style-type: none"> The relative humidity (RH) of the air is less than 95%, and there is no condensation. The max. RH cannot exceed 60% in the environment where there are corrosive gases.
Altitude Height	<ul style="list-style-type: none"> Lower than 1000m When the altitude exceeds 1000m, derate by 1% for every increase of 100m. When the altitude exceeds 3000m, consult our local dealer or office for details.
Vibration	<ul style="list-style-type: none"> Max. vibration acceleration: 5.8m/s² (0.6g)

Site requirement

Site	Requirement
Indoor	<ul style="list-style-type: none"> Must be free from sources of electromagnetic radiation and direct sunlight. <p>Note: The inverter must be installed in a clean, well-ventilated environment appropriate to its IP protection rating.</p>
	<p>The installation area must be free of oil mist, metal powder, conductive dust, and moisture.</p>
	<p>The area must not contain radioactive, corrosive, hazardous, flammable, or explosive materials.</p> <p>Note: Do not install the inverter on combustible surfaces.</p>
	<p>The environment should have low salt content.</p>

3.2.2. Installation direction

The inverter must be installed vertically on a wall or inside a cabinet.

Do not install the inverter in any other orientation, such as horizontally (lying flat), transversely (sideways), or inverted (upside down).

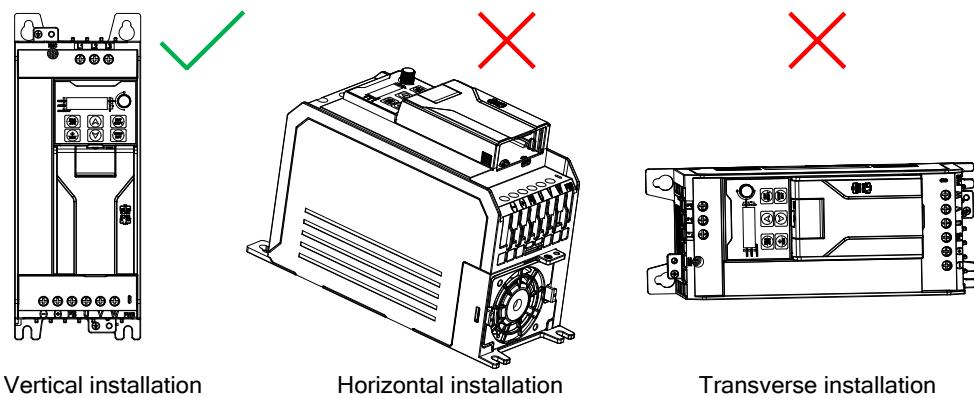


Figure 3-1 Mounting direction

3.2.3. Installation space

3.2.3.1. Single inverter

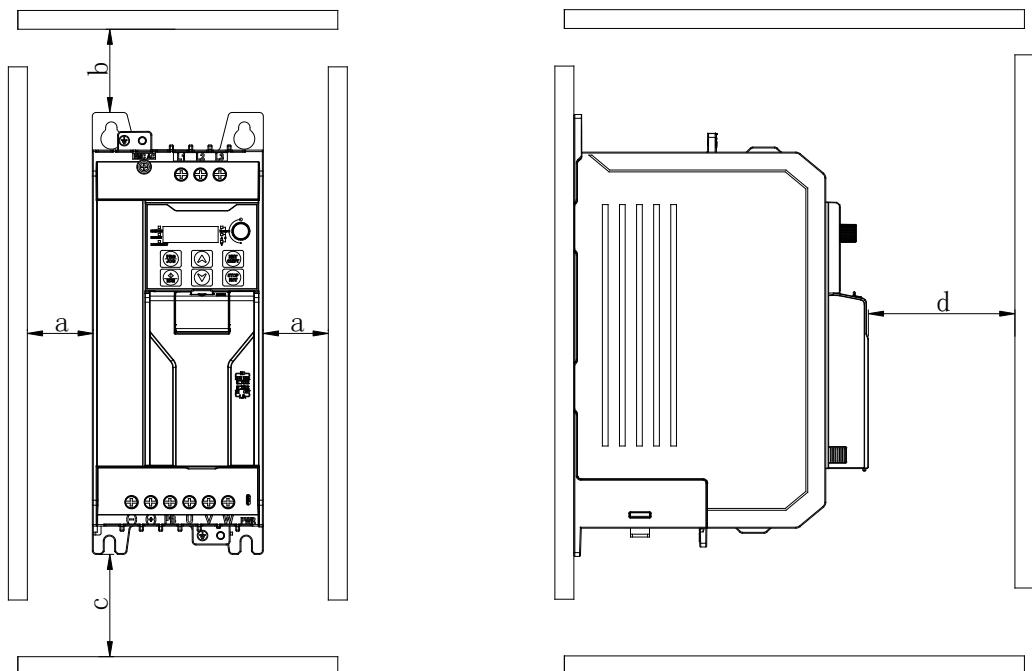


Figure 3-2 Installation space diagram of single inverter

Frame	Dimensions (mm)			
	a	b	c	d
A, B, C, D, E	≥40	≥100	≥100	≥40

Table 3-1 Installation space dimensions of single inverter

3.2.3.2. Multiple inverters

When installing multiple inverters, you can install them in parallel. When you install inverters in different sizes, align the top of each inverter before installation for the convenience of future maintenance.

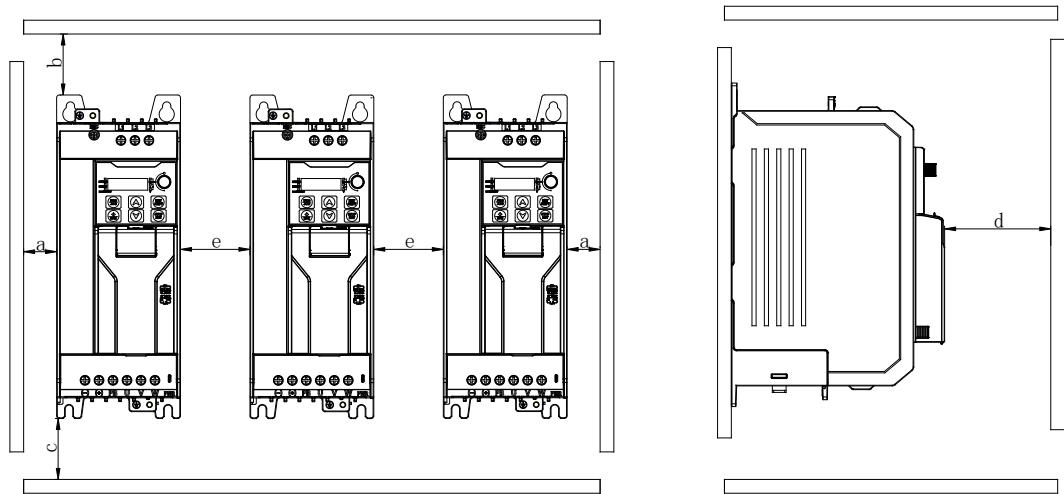


Figure 3-2 Installation space diagram of multiple inverters

Note: The ambient temperature for side-by-side installation must not exceed 40°C.

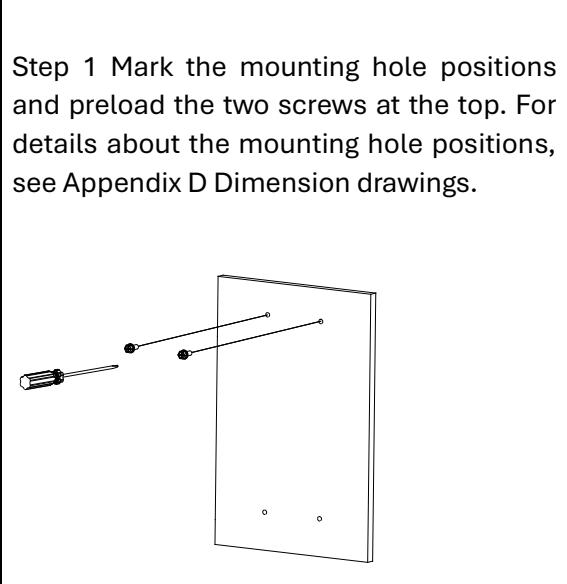
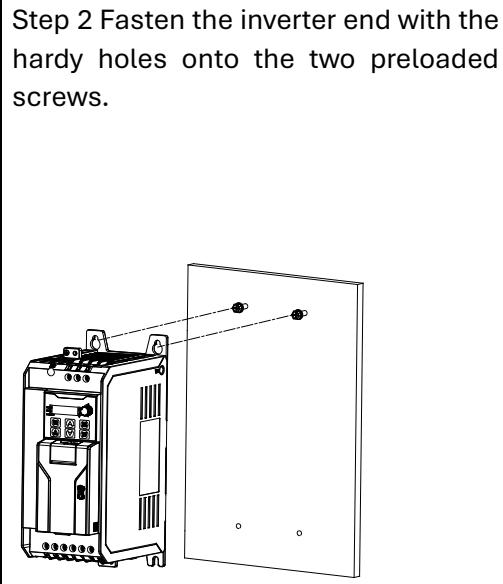
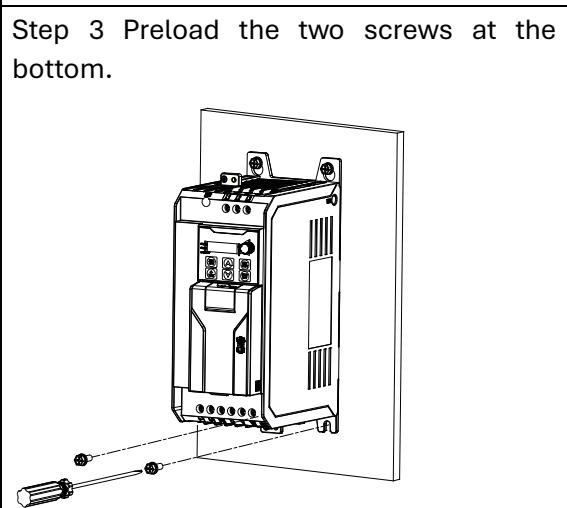
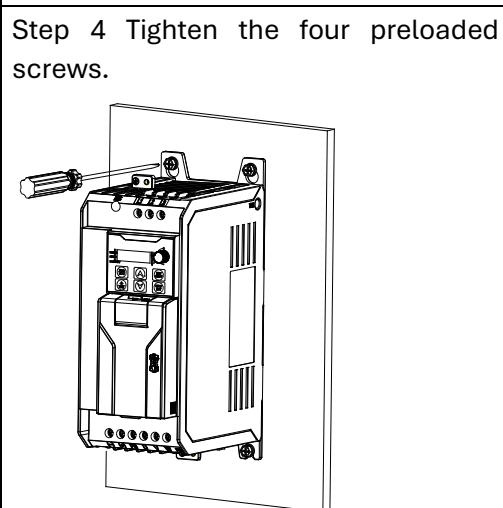
Frame	Dimensions (mm)				
	a	b	c	d	e
A, B, C, D, E	≥40	≥100	≥10 0	≥40	≥30 =0 (Heavy load: Ambient environment ≤40°C)

Table 3-2 Installation space dimensions of multiple inverters

3.3. Installation and uninstallation

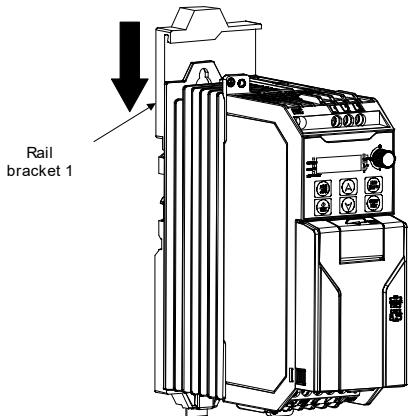
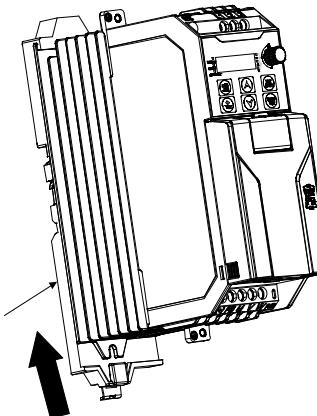
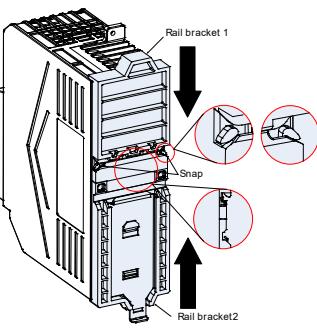
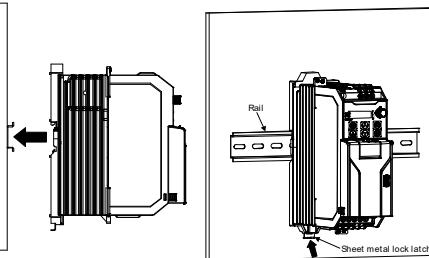
The inverter installation methods vary with the inverter frames. Please choose the appropriate installation method from the following table based on the specific model and the applicable environment. (✓ indicates the installation method that can be selected.)

Frame	Mounting method		
	Wall mounting	DIN rail mounting	Flange mounting
A	✓	✓	-
B	✓	✓	-
C	✓	-	✓
D	✓	-	✓
E	✓	-	✓





Table 3-3 Installation method selection

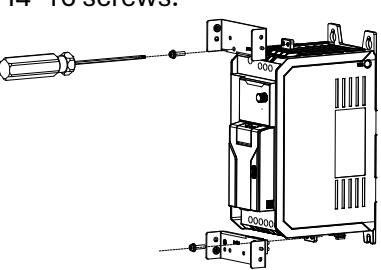
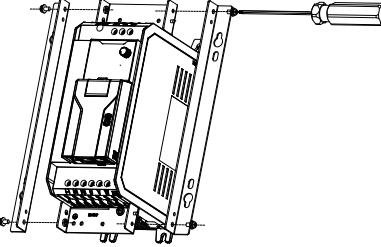
Note: When selecting the DIN rail mounting method for the models in frame A or B, you must select a rail mounting bracket. For details about the mounting bracket sizes and ordering codes, see section E.3.5 DIN rail mounting bracket. The flange mounting plate must be used for flange mounting of an inverter in frame C, D, or E.

3.3.1. Installation

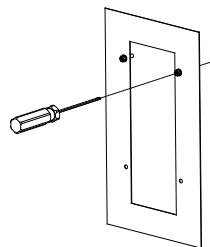




3.3.1.1. Wall mounting

The wall mounting procedure is as follows:

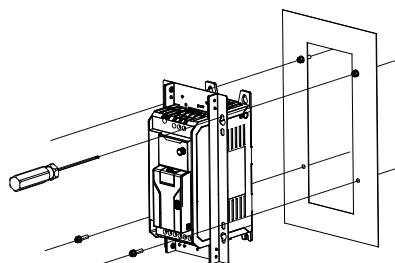
<p>Step 1 Mark the mounting hole positions and preload the two screws at the top. For details about the mounting hole positions, see Appendix D Dimension drawings.</p>	<p>Step 2 Fasten the inverter end with the hardy holes onto the two preloaded screws.</p>
<p>Step 3 Preload the two screws at the bottom.</p>	<p>Step 4 Tighten the four preloaded screws.</p>



3.3.1.2. DIN rail mounting

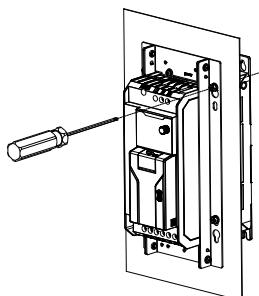
The mounting procedure is as follows:


<p>Step 1 Insert rail bracket 1 from the inverter top and tighten the upper lugs.</p>	<p>Step 2 Insert rail bracket 2 from the inverter bottom and tighten the lower lugs.</p>
<p>Step 3 Fasten rail brackets 1 and 2. (Ensure that the snap clicks into place and the sheet metal lock is in the pull-down position.)</p>	<p>Step 4 Place the inverter with brackets vertically on the DIN rail and push the sheet metal lock catch upwards to make it tightly engage with the rail.</p>

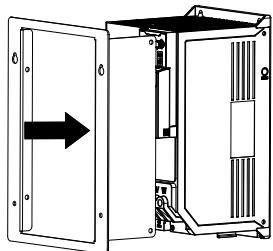
3.3.1.3. Flange mounting


The flange mounting procedure for inverters in frame C is as follows:

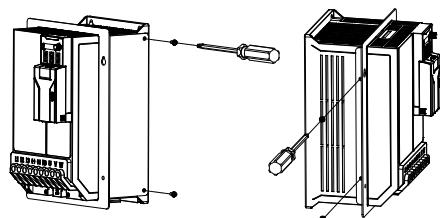
<p>Step 1 Install the two fixing brackets, marked "power" and "motor", respectively, onto the grounding screw holes on the VFD. Pre-tighten with two M4*16 screws.</p>	<p>Step 2 Align the positioning pins on the brackets and install the two side connection brackets. Pre-tighten with two M4*8 screws. Then fully tighten and verify all six screws.</p>
--	---


Step 3 Pre-install two M5 screws at the upper section of the mounting surface.

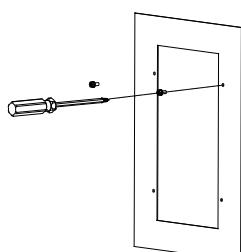
Step 4 Hang the flange mounting bracket upper slotted holes onto the pre-installed screws. Then install the lower two M5 screws.

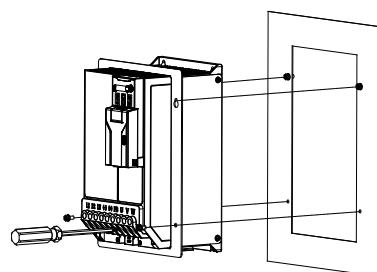


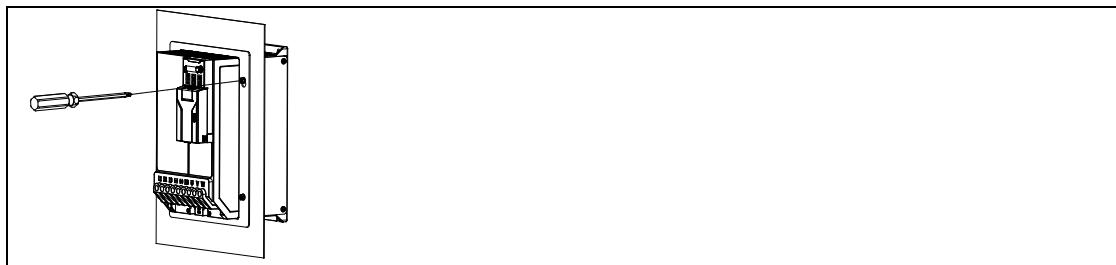
Step 5 Fully tighten and verify all four screws. Installation is complete.



The flange mounting procedure for inverters in frames D and E is as follows:

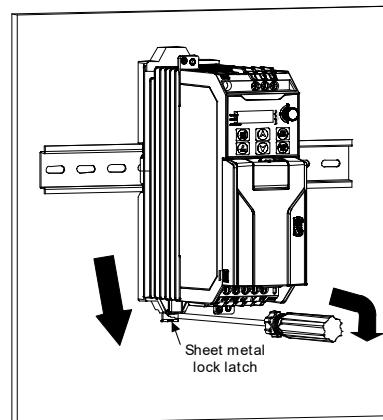

Step 1 Insert the flange mounting bracket vertically from the front of the machine.


Step 2 Install the four M4 screws on the side of the machine.

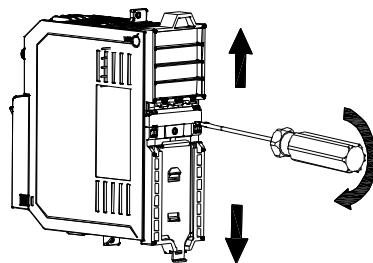

Step 3 Pre-install two screws on the mounting surface.

Step 4 Align the keyhole slots on the top of the flange mounting bracket with the pre-installed screws and then install the two lower screws.

Step 5 Tighten and check all four screws to complete the installation.



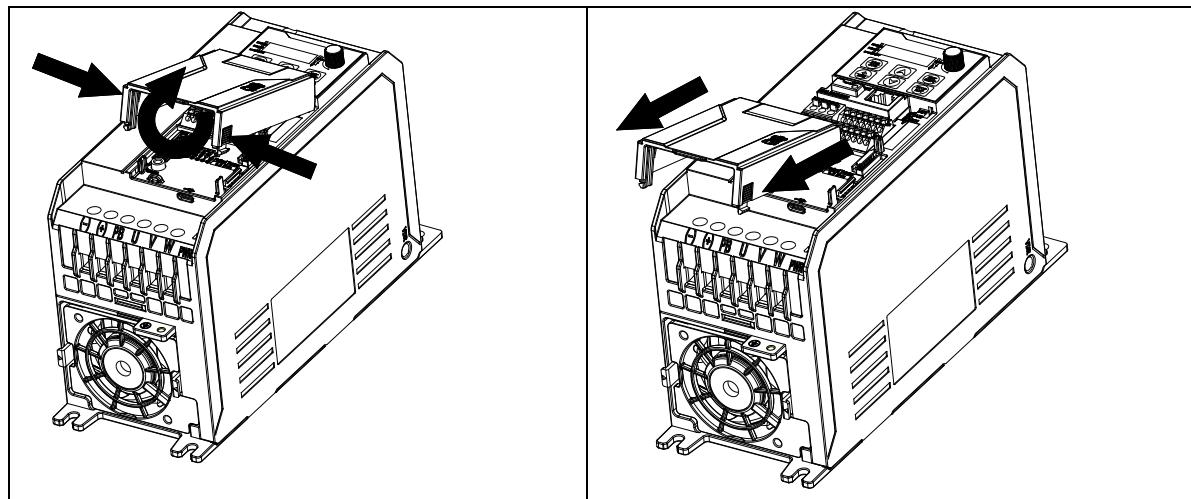
3.3.2. Disassembly


3.3.2.1. DIN rail dismounting

The dismounting procedure is as follows:

Step 1 Use a tool to pull out the sheet metal lock catch downwards until it is fixed and take out the inverter with the rail bracket from the DIN rail.

Step 2 Insert a flathead screwdriver into the snap slot and rotate it 90 degrees to release the snap on that side. Repeat the same method to remove the snap on the other side.



3.3.2.2. Cover dismounting

You need to remove the inverter cover for main circuit and control circuit wiring. The disassembly procedure is as follows:

Step 1 Press the elastic snaps on both sides of the bottom of the cover and lift them up with force until the snaps detach from the slot.

Step 2 Lift the cover and pull it out in tilted way.

4. Electrical Installation

4.1. Insulation inspection

Do not perform any voltage endurance or insulation resistance tests, such as high-voltage insulation tests or using a megohmmeter to measure the insulation resistance, on the inverter or its components. Insulation and voltage endurance tests have been performed between the main circuit and housing of each inverter before delivery. In addition, voltage limiting circuits that can automatically cut off the test voltage are configured inside the inverters. If you need to conduct insulation resistance testing on the inverter, please contact IMO.

 Note: Before conducting insulation resistance testing on input and output power cables, remove the cable connection terminals from the inverter.

- Input power cable

Check the insulation conditions of the input power cable of an inverter according to the local regulations before connecting it.

- Motor cable

Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the inverter. Use a megohmmeter of 500V DC to measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, see the description provided by the manufacturer.

 Note: If the motor interior is damp, the insulation resistance will decrease. If moisture is suspected, dry and re-measure the motor.

4.2. Checking compatible grounding systems

Each inverter includes an integrated EMC filter as standard. It can therefore be installed on both symmetric and asymmetric grounding systems.

When the inverter is used on an asymmetric grounding system, the EMC screws and clip (namely the EMC AC screw, EMC DC screw, and EMC DC clip) must be removed.

This prevents the internal EMC filter capacitor from connecting to the ground potential, which could otherwise cause nuisance tripping or damage. The inverter supports the TN-S, TT, and IT grounding systems.

4.2.1. EMC filter grounding capacitor

The inverter with an internal EMC filter can be installed on a TN-S system with a symmetrical earth ground. If the inverter is installed to another grounding system, it may be necessary to disconnect the EMC filter and the voltage dependent resistor (VDR). See sections 4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems and 4.2.4 Guidelines for installing the inverter in TT systems.

Warning

Do not install an inverter with an EMC filter on a system that is not suitable for the filter. This can cause hazard or damage to the inverter.

Note: When the internal EMC filter is disconnected, the EMC compatibility of the inverter will be significantly reduced and will not meet the EMC compatibility motor cable length requirements in section B.5.2 Motor cable length for EMC.

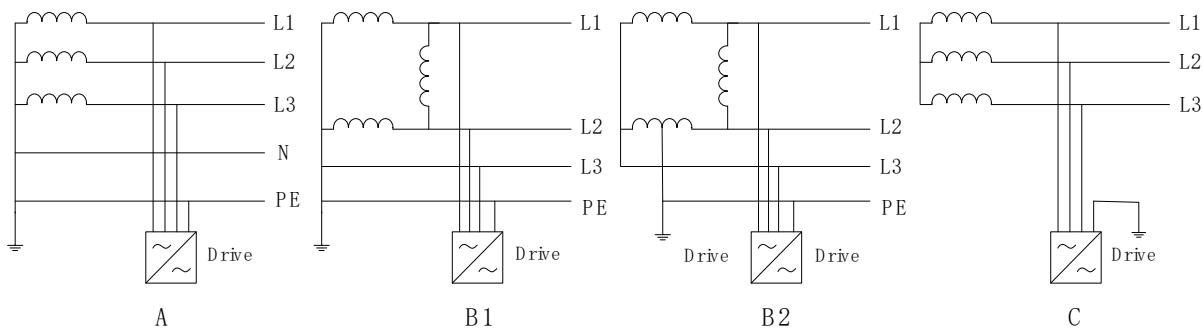
4.2.2. Ground-to-phase VDR

Most inverters are designed to operate on three-phase power supply systems with symmetric line voltages. To meet surge immunity requirements, these inverters are equipped with VDRs, which provide voltage surge protection as well as phase-to-phase and phase-to-ground protection. The VDR circuit is designed only for surge suppression (transient line protection) and is not intended for continuous operation.

For ungrounded supply systems, the phase-to-ground VDR can provide a continuous current path to ground. Exceeding the published phase-to-phase, phase-to-ground voltage or energy ratings may damage the VDR.

Standard inverters with VDRs can be installed in symmetrically grounded TN-S systems. If the inverter is installed to another grounding system, it may be necessary to disconnect the VDR. See sections 4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems and 4.2.4 Guidelines for installing the inverter in TT systems.

Warning


Do not connect the phase-to-ground VDR to a system that is not suitable for the VDR when installing the inverter. Otherwise, the VDR circuit may be damaged.

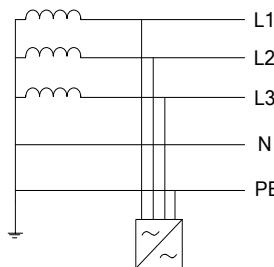
4.2.3. When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems

The requirements for disconnecting EMC filters and VDRs, as well as additional requirements for different power systems are shown in the following.

Frame	Symmetrical grounding TN-S system, also known as grounding Y system (A)	Corner-grounded delta (B1) and midpoint-grounded delta (B2) systems $\leq 600V$	IT system (floating ground or high resistance grounding [$>30\text{ohm}$]) (C)
A, B	Do not disconnect the EMC AC screw, EMC DC clip, and VDR screw.	Disconnect the EMC AC screw, EMC DC clip, and VDR screw.	Disconnect the EMC AC screw, EMC DC clip, and VDR screw.
C	Do not disconnect the EMC AC or VDR screw.	Disconnect the EMC screw and VDR screw.	Disconnect the EMC screw and VDR screw.
D, E	Do not disconnect the EMC AC screw, EMC DC screw, and VDR screw.	Disconnect the EMC AC screw, EMC DC screw, and VDR screw.	Disconnect the EMC AC screw, EMC DC screw, and VDR screw.

			screw, and VDR screw.
--	--	--	-----------------------

Note: These are the EMC filter and VDR screws in the inverters in different outline dimensions.


Frame	EMC filter screw/clip	VDR screw
A, B	EMC AC screw and EMC DC clip	VDR
C	EMC AC screw	VDR
D, E	Two EMC screws (including EMC AC and EMC DC)	VDR

4.2.4. Guidelines for installing the inverter in TT systems

The inverter can be installed on the TT system under the following conditions:

1. A residual current protection device has been installed in the power supply system.
2. These screws have been disconnected. Otherwise, the leakage current from the EMC filter, VDR, and capacitor can cause the residual current protection device to trip.

Frame	EMC filter screw	VDR screw
A, B	EMC AC screw, EMC DC clip	VDR
C	EMC AC screw	VDR
D, E	Two EMC screws (including EMC AC and EMC DC)	VDR

Note:

- The inverter is not compliant with the EMC classification if the EMC filter screw is disconnected.

- The inverter does not guarantee the proper operation of its internal ground leakage detector.
- In large systems, the leakage protection device may trip unexpectedly.

4.2.5. Identifying grid grounding systems

Warning	
	Only qualified professionals are allowed to carry out the operations mentioned in this section. Depending on the installation location, this work can even be classified as live work. Only electrical professionals certified for the job should proceed with the work. Comply with local regulations. Ignoring these instructions could result in injury or death.

To determine the grounding system, check the power transformer connections. See the applicable electrical drawings for the building. Otherwise, measure these voltages at the switchboard and see the table to identify the grounding system type.

Input line phase-to-phase voltage (UL-L)

Input line L1 to-ground voltage (UL1-G)

Input line L2 to-ground voltage (UL2-G)

Input line L3 to-ground voltage (UL3-G)

The following table shows the relationship between line-to-ground voltage and line-to-line voltage for each grounding system.

U_{L-L}	U_{L1-G}	U_{L2-G}	U_{L3-G}	Power system type
X	0.58 X	0.58 X	0.58 X	Symmetric grounding system (TN-S system)
X	1.0 X	1.0 X	0	Corner-grounded delta system (asymmetric)
X	0.866 X	0.5 X	0.5 X	Neutral-grounded delta system (asymmetrical)
X	Level changes over time	Level changes over time	Level changes over time	IT system (floating or high resistance grounding [$>30\Omega$]) asymmetric
X	Level changes over time	Level changes over time	Level changes over time	TT system (protective earth connection of electrical equipment is provided by local connection. A separate protective earth connection is installed at the generator)

4.2.6. Disconnecting the internal EMC filter or VDR, for frames A to E

To disconnect the internal EMC filter or VDR, if necessary, proceed as follows:

Turn off the power supply to the inverter.

To disconnect the internal EMC filter, remove the EMC screw/clip (see earlier mentioned EMC filter and VDR screws for inverters in different frames for details).

To disconnect the VDR, remove the VDR screw.

For the models with embedded EMC filter, the common-mode capacitor circuit is grounded to the heat sink through EMC screw, forming a loop path for high-frequency noise and releasing high-frequency interference; if leakage protection is applied during startup when a leakage circuit breaker has been configured, disconnect the EMC screw/clip (see section 4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems).

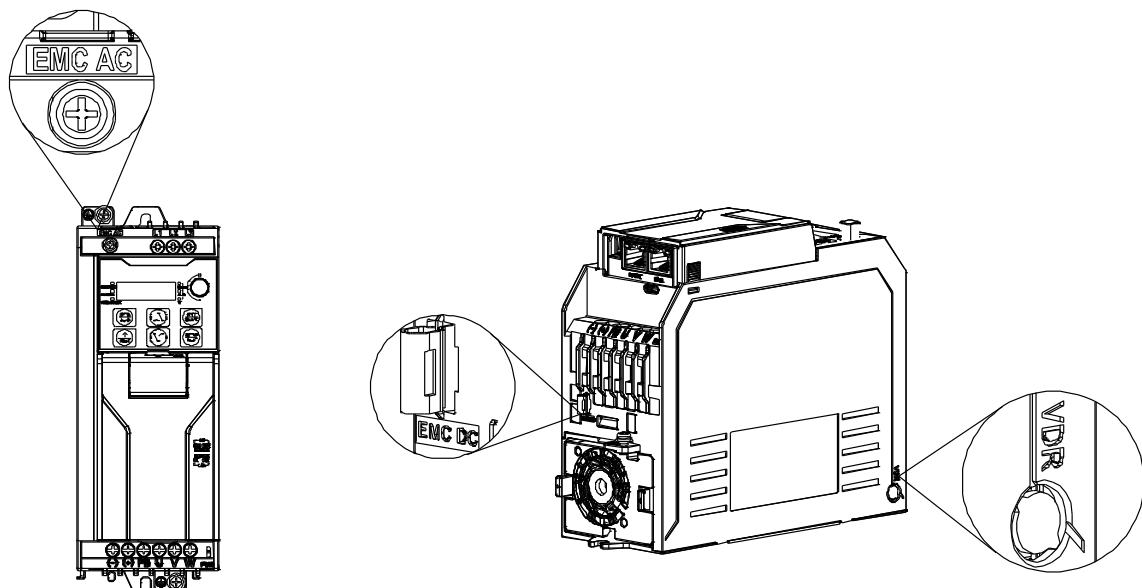


Figure 4 1 EMC screw positions (for frames A and B)

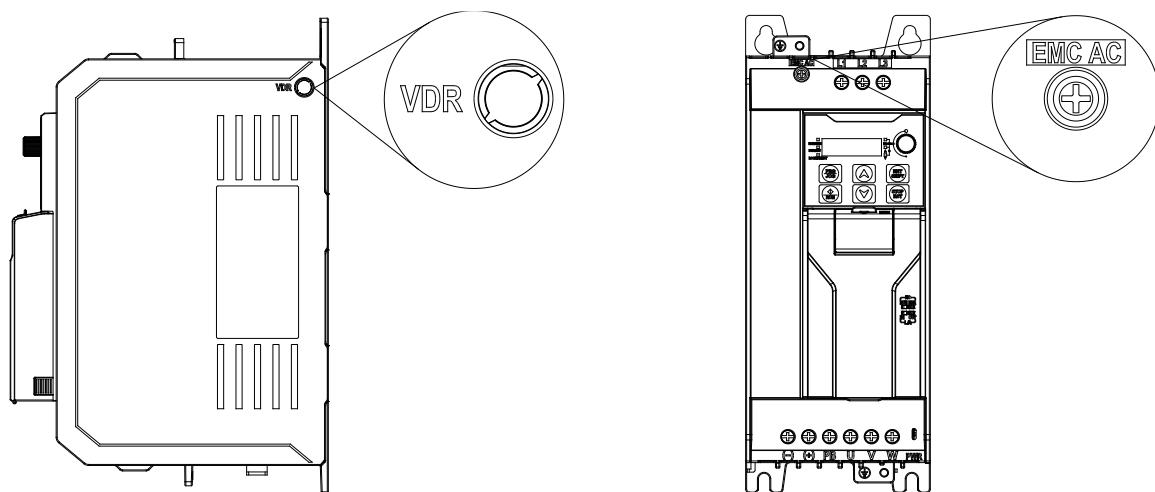


Figure 4 2 EMC screw positions (for frame C)

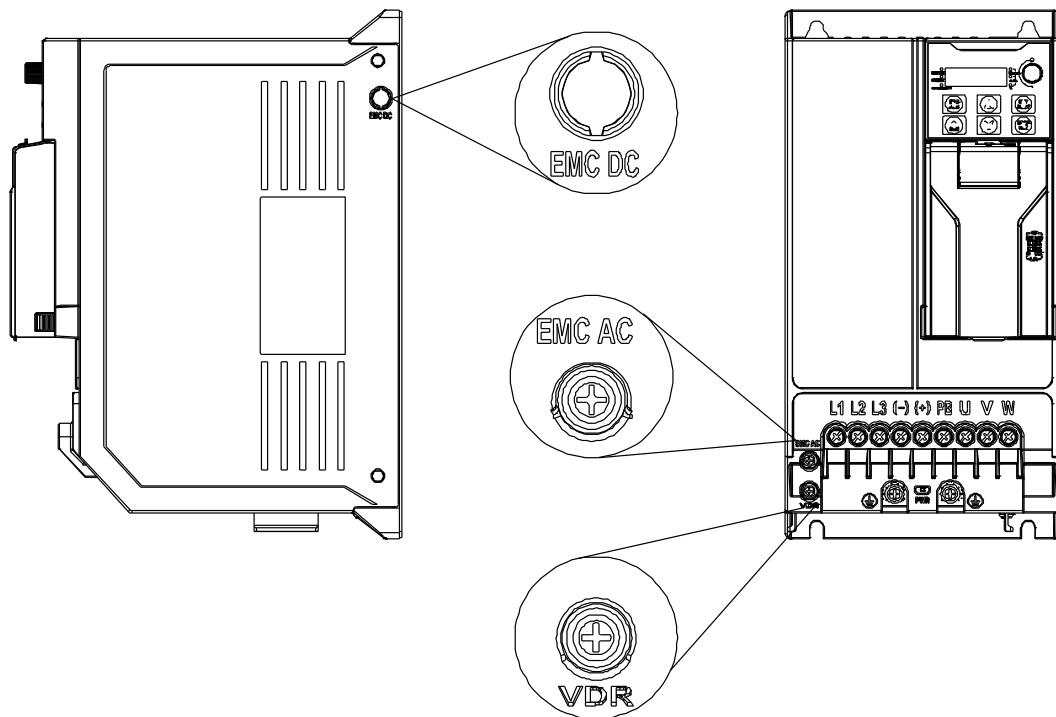


Figure 4-3 EMC screw positions (for frames D and E)

Note:

- Do not remove EMC screws when the inverter is powered on.
- Disconnecting EMC screws will reduce the inverter electromagnetic compatibility, which may cause failure to meet the EMC specification requirements.
- For the models with embedded EMC filter, the common-mode capacitor circuit is grounded to the heat sink through EMC screws, forming a loop path for high-frequency noise and releasing high-frequency interference; if leakage protection is applied during startup when a leakage circuit breaker has been configured, disconnect the EMC screws.

4.3. Cable selection and routing

4.3.1. Cable selection

- Power cable

Power cables mainly include input power cables and motor cables. Comply with local regulations to select cables.

To meet the EMC requirements stipulated in the CE standards, it is recommended to use symmetrical shielded cables as input motor cables and power cables, as shown in Figure 4-4. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.

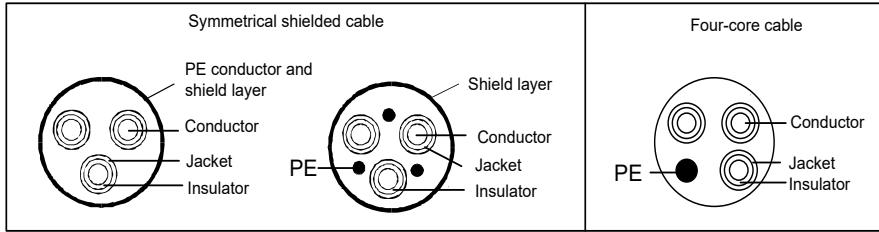


Figure 4.4 Symmetrical shielded cable and four-core cable

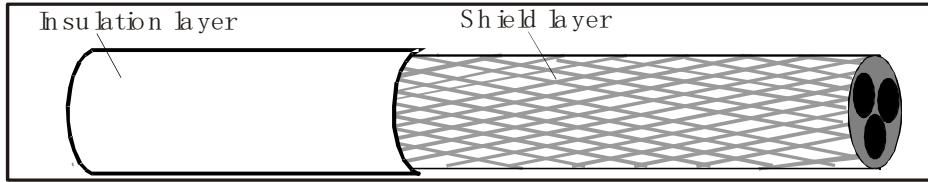


Figure 4.5 Cable cross section

Note:

- The input power cables and motor cables must be able to carry the corresponding load currents.
- B.5.1 Motor cable length for normal operation shows the minimum requirement on the motor cable of inverter. The cable contains a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.
- The cable conductor temperature limit is 70 °C. If you use a cable with the conductor temperature limit of 90 °C, the cable must comply with relevant national standards and specifications.
- If the electrical conductivity of the motor cable shield layer does not meet the requirements, a separate PE conductor must be used.
- The cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type.
- To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must be at least 1/10 of the conductivity of the phase conductor.
- This requirement can be well met by a copper or aluminum shield layer.
- **Control cable**

Control cables mainly include analog signal control cables and digital signal control cables. Analog signal control cables use twisted double shielded cables with a separate shielded twisted pair for each signal and different ground wires for different analog signals. For digital signal control cables, a double-shielded cable is preferred, but single-shielded or unshielded twisted pairs can also be used. For details, see section E.1.2 Control cable.

4.3.2. Cable arrangement

The cable routing and routing distance are shown in Figure 4 6.

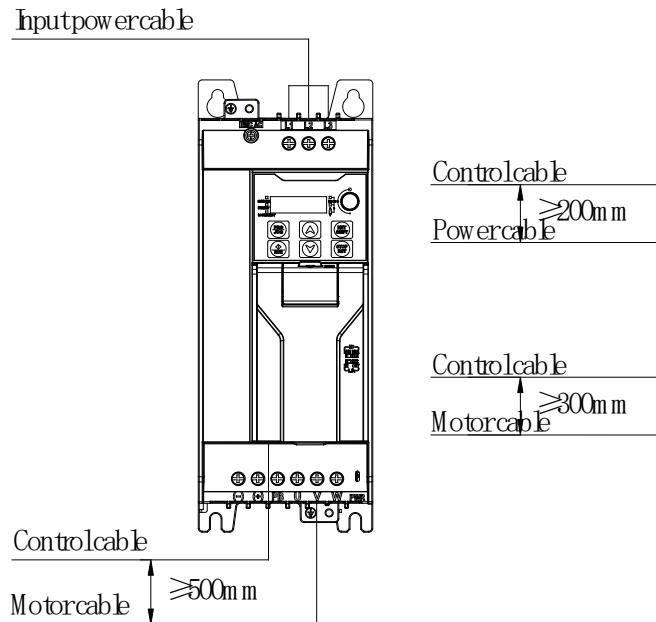


Figure 4-6 Cable routing distance

Note:

- Motor cables must be arranged away from other cables. The du/dt of the inverter output may increase electromagnetic interference on other cables.
- Motor cables cannot be routed with other cables in parallel for long distances.
- If the control cable and power cable must cross each other, ensure that the angle between them is 90°.
- Motor cables of multiple inverters can be routed in parallel. It is recommended to route motor cables, input power cables, and control cables in separate cable trays.
- The cable trays must be connected properly and well grounded.
- Do not rout other additional cables through the inverter.

4.4. Main circuit wiring

4.4.1. Main circuit wiring

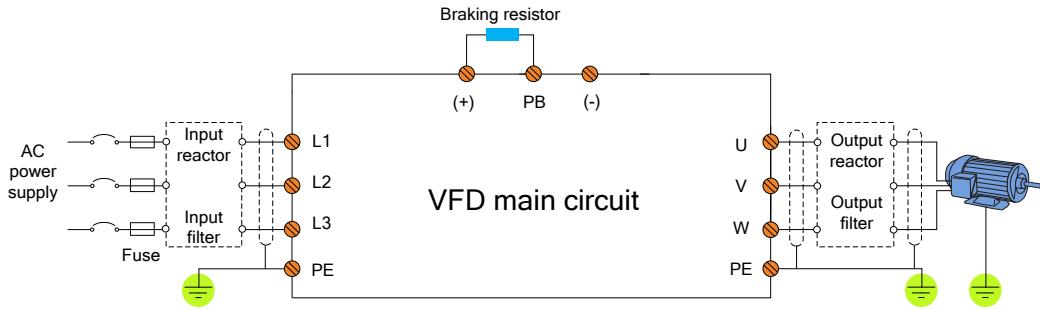


Figure 4-7 Main circuit wiring diagram

 Note: The fuse, input reactor, input filter, output reactor, and output filter are optional parts. For details, see Appendix E Peripheral accessories.

4.4.2. Main circuit terminals

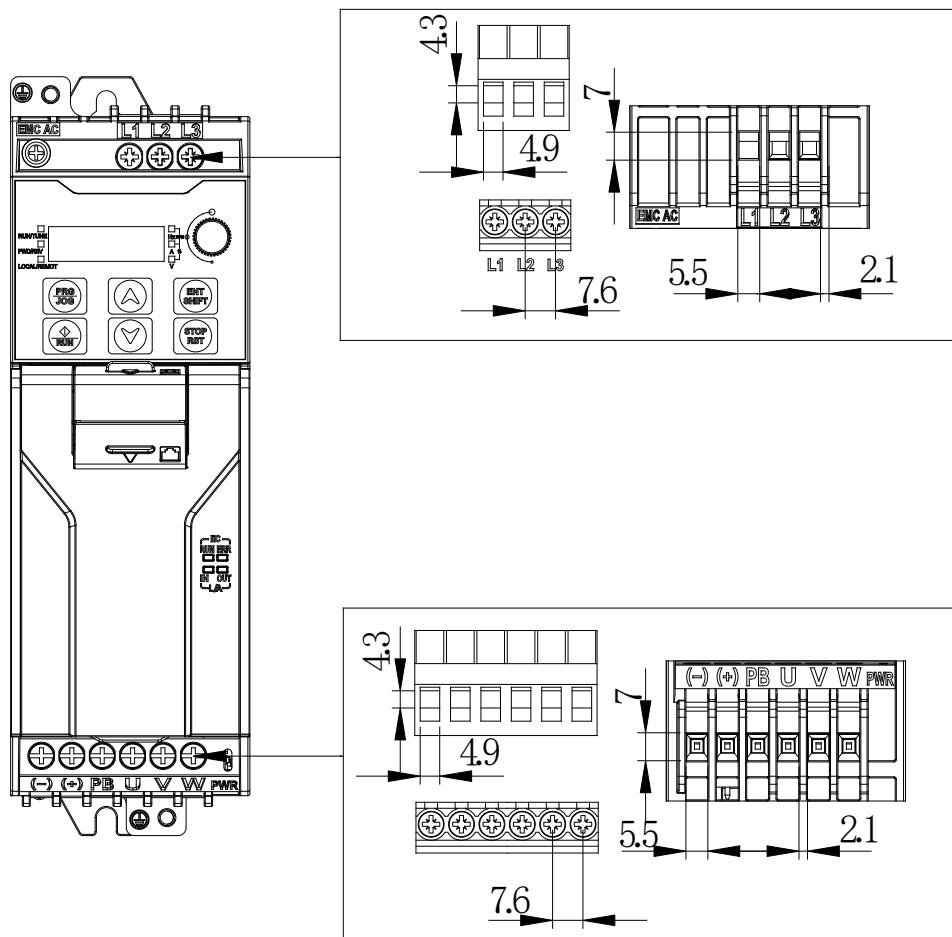


Figure 4-8 Main circuit terminal diagram for inverters in frame A

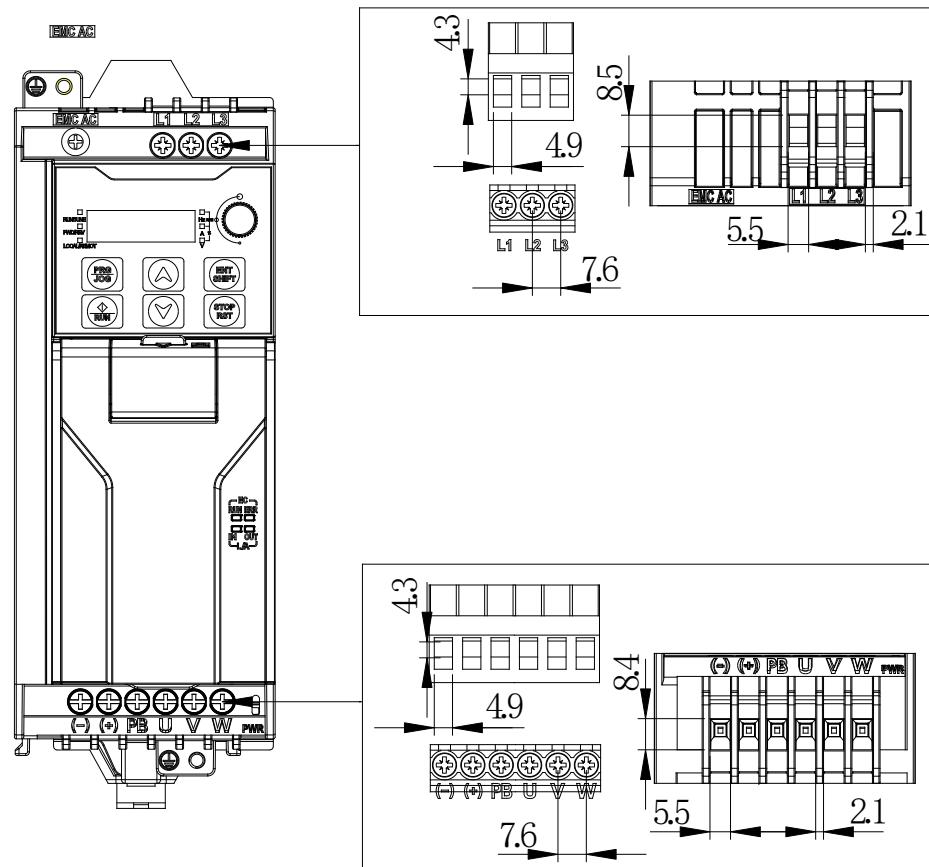


Figure 4-9 Main circuit terminal diagram for inverters in frame B

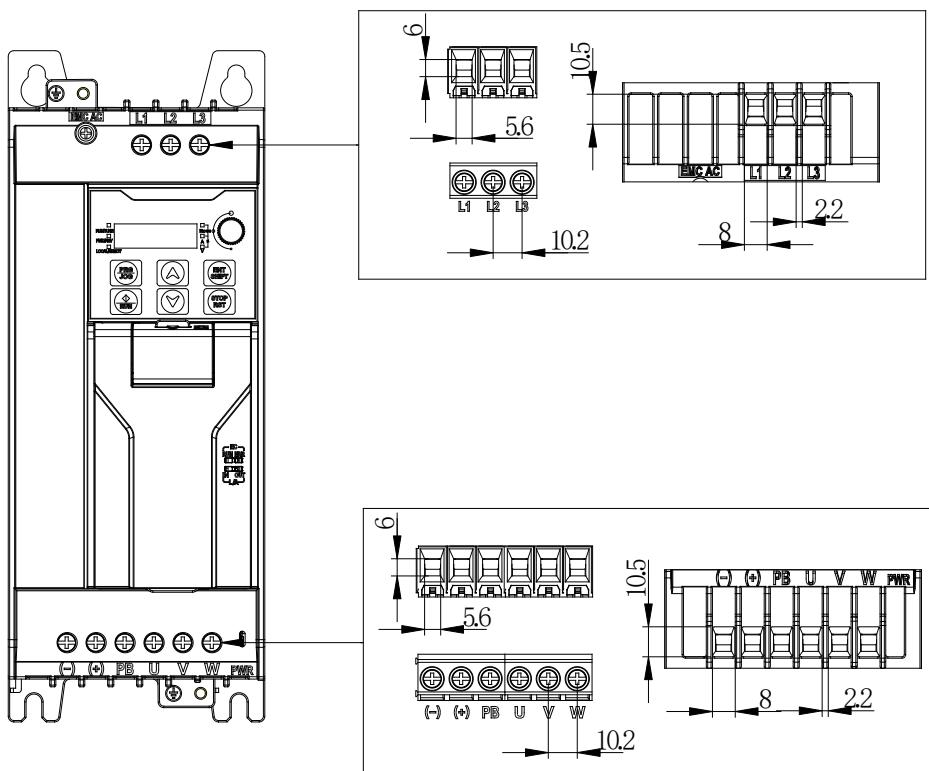


Figure 4-10 Main circuit terminal diagram for inverters in frame C

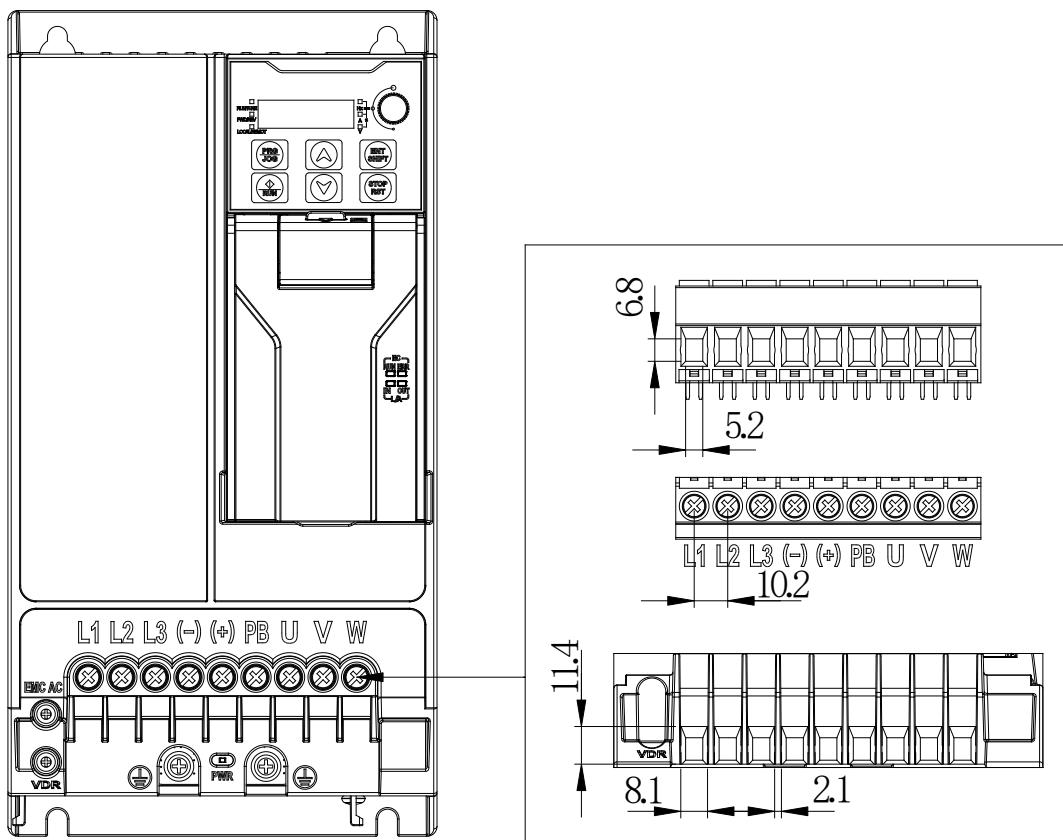


Figure 4-1 Main circuit terminal diagram for inverters in frame D

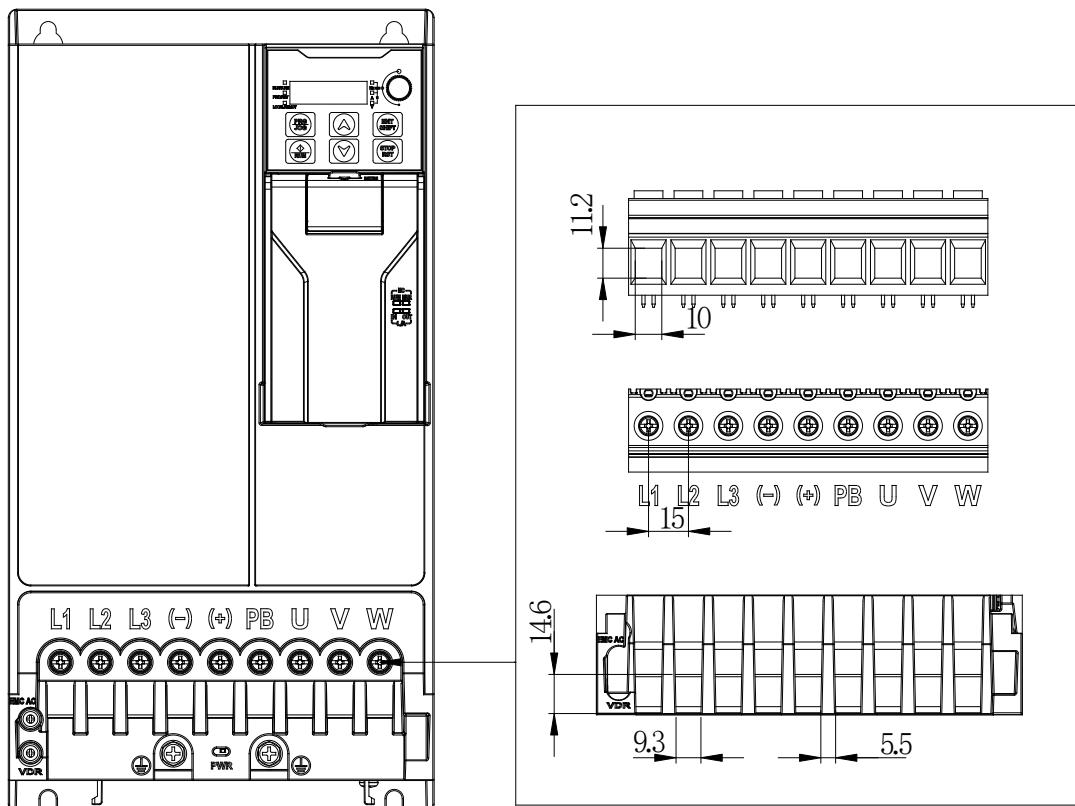
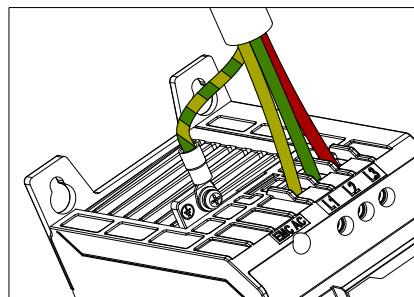


Figure 4-2 Main circuit terminal diagram for inverters in frame E

Terminal	Function
L1, L2, L3 (L1, L2)	3PH (or 1PH) AC input terminals, connected to the grid
U, V, W	3PH AC output terminals, connected to the motor usually
(+)	(+) and (-) connect to the shared DC bus terminals.
(-)	PB and (+) connect to external braking resistor terminal
PB	
⏚	PE terminal. The PE terminals of each machine must be grounded reliably.


Table 4-1 Main circuit terminal definition

Note: It is recommended to use a symmetrical motor cable. Please ground the grounding conductors in the motor cable at the inverter end and at the motor end.

4.4.3. Wiring procedure

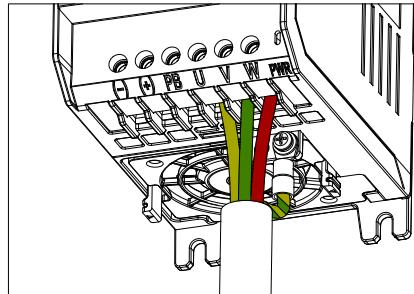
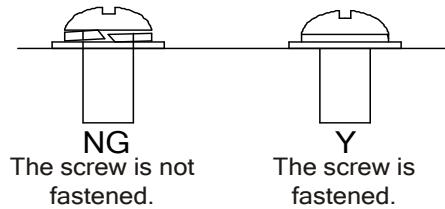

Step 1 Connect the yellow and green grounding line of the input power cable to the inverter grounding terminal \textcircled{E} , connect the 3PH input cable to the L1, L2, and L3 terminals, and tighten up.

Figure 4-3 Wiring diagram of input power cables

Step 2 Connect the yellow and green grounding line of the motor cable to the inverter PE terminal, connect the motor 3PH cable to the U, V and W terminals, and tighten up.


Figure 4-4 Wiring diagram of motor cables

Step 3 Connect optional parts such as the braking resistor that carries cables to designated positions. For details, see section 4.3.1 Cable selection.

Step 4 Fasten all the cables outside the inverter mechanically if allowed.

Figure 4-5 Screw installation diagram

4.5. Control circuit wiring

4.5.1. Control circuit wiring

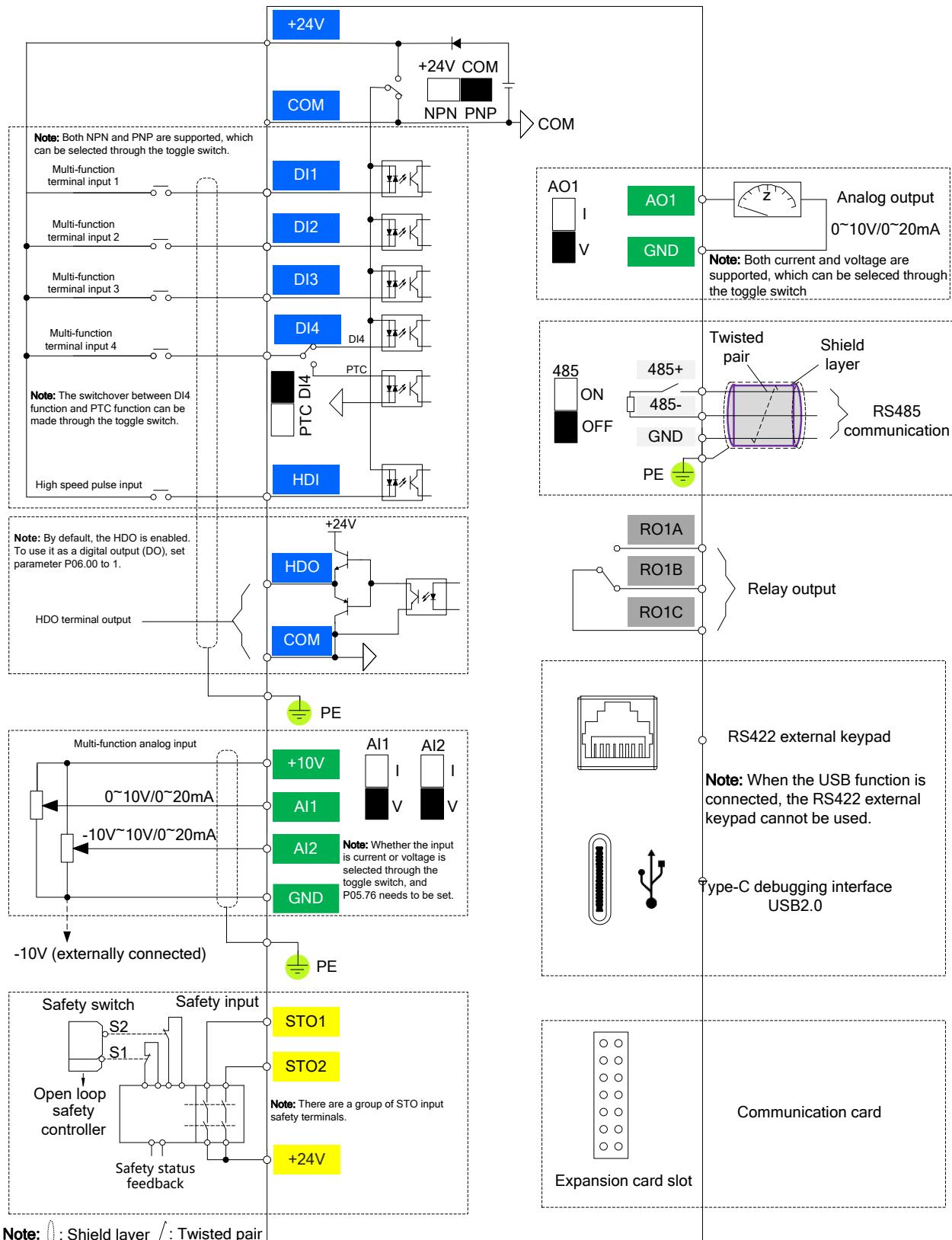


Figure 4-16 Control circuit wiring

4.5.2. Control circuit terminals

Terminal	Function
+10V	Locally provided +10V power supply. Max. output current: 50mA.
GND	Power supply reference ground
AI1	<p>Input range: 0–10V/0–20mA Input impedance: 33kΩ for voltage input or 250Ω for current input Whether the input is current or voltage is selected through the toggle switch AI1 (I/V), and the function code P05.76 also needs to be set accordingly. Accuracy: Full-scale accuracy of 1%</p>
AI2	<p>Input range: 0–10V/0–20mA Input impedance: 33kΩ for voltage input or 250Ω for current input Whether the input is current or voltage is selected through the toggle switch AI1 (I/V), and the function code P05.76 also needs to be set accordingly. Accuracy: Full-scale accuracy of 1%</p>
AO1	<p>Output range: 0–10V/0–20mA Whether the output is current or voltage is selected through the toggle switch AO1 (I/V). Accuracy: Full-scale accuracy of 1%</p>
RO1A	<p>Relay output. RO1A: NO; RO1B: NC; RO1C: common Contact capacity: 3A/AC 250V, 1A/DC 30V</p>
RO1B	
RO1C	
HDO1	<p>Switch capacity: 50mA/30V Output frequency range: 0–50kHz When P06.00=1, it can be configured as normal DO terminal, with the push-pull output of 0V/24V, and the external power supply cannot be greater than 24V.</p>
485+	<p>RS485 differential signal communication port. Use shielded twisted pairs for standard RS485 communication interfaces. You can determine whether to connect the 120Ω terminal matching resistor of RS485 communication through the toggle switch 485(ON/OFF).</p>
485-	
Type-C	<p>Type-C interface, which can be directly connected to a PC, using Modbus RTU as the communication protocol. When the inverter is not connected to the main power supply, it can be used to modify, save, import, and export parameters; when the inverter is connected to the main power supply, it can be used to control the inverter operation and monitor its running parameters.</p>
+24V	<p>User power supply provided by the inverter. Max. output current: 100mA It can be used as an external NPN mode power input for the DI terminal (the switch must be turned to the NPN position).</p>
COM	+24V digital reference ground
DI1–DI4 (PTC)	<p>DI1–DI4 digital input Effective input high level range: 10–30V Effective input low level range: 0–5V</p>

Terminal	Function
	<p>Max. input frequency: 1kHz</p> <p>Programmable digital input terminals, the functions of which can be set through the related parameters</p> <p>Whether the NPN or PNP mode is used can be selected through the toggle switch, and the connection to external power is supported.</p> <p>PTC function: DI4 can be configured with PTC overtemperature protection, which can be enabled through P05.04 and toggle switch setting. Overtemperature resistance: 3.6kΩ. Recovery resistance: 1.5kΩ.</p>
HDI1	<p>It can act as a digital input channel, in addition to high frequency pulse input channel.</p> <p>It supports the switchover between NPN and PNP.</p> <p>Max. input frequency: 50kHz</p> <p>Duty ratio: 30%–70%</p>
+24V-STO1	<p>Safe torque off (STO) redundant input, connected to the external NC contact. When the contact opens, STO acts and the inverter stops output.</p>
+24V-STO2	<p>The safety input signal cable uses the shielded cable, and the length is controlled within 25m.</p> <p>The STO1 and STO2 terminals are short connected to +24V by default. Remove the jumper from the terminals before using the STO function.</p>
Communication expansion card terminals (NXG-E-ETH)	
+24E	An external 24V connection can be used for communication debugging.
COM	
EC IN	<p>Supported bus types: PROFINET, EtherCAT, EtherNet IP, and Modbus TCP</p> <p>EtherCAT can be only used in the IN port, while the other three protocols do not distinguish the direction.</p>
EC OUT	<p>Supported bus types: PROFINET, EtherCAT, EtherNet IP, and Modbus TCP</p> <p>EtherCAT can be only used in the OUT port, while the other three protocols do not distinguish the direction.</p>

4.5.3. Input/output signal wiring

4.5.3.1. Digital input/output signal wiring

- **Digital input signal wiring**

The DI1–DI4 terminals of the inverter support NPN (sinking)/PNP (sourcing) connection, and the factory default connection is PNP (sourcing). External power wiring is supported.

Figure 4-6 NPN (sinking) wiring

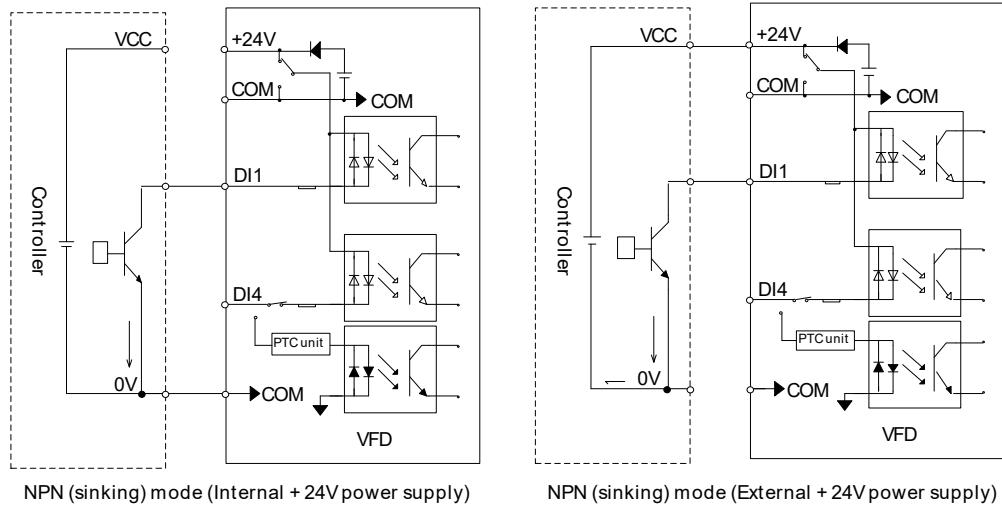
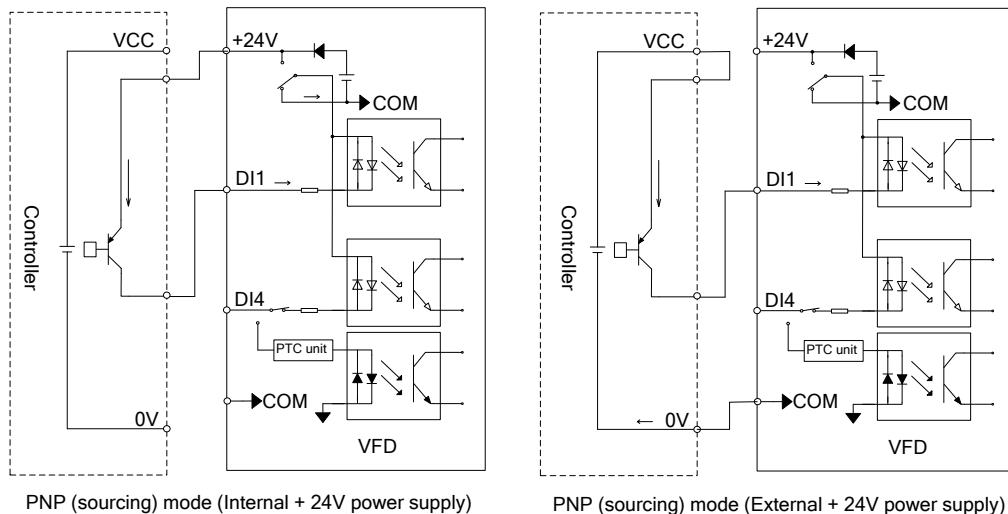
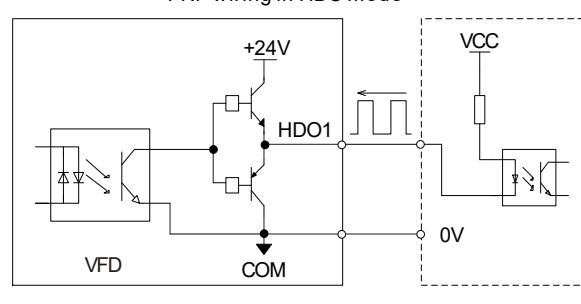
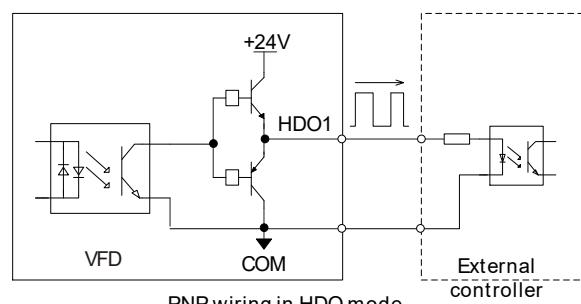
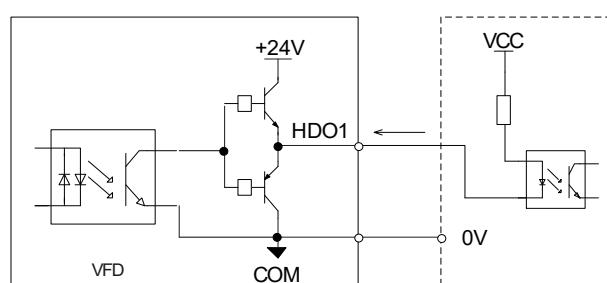
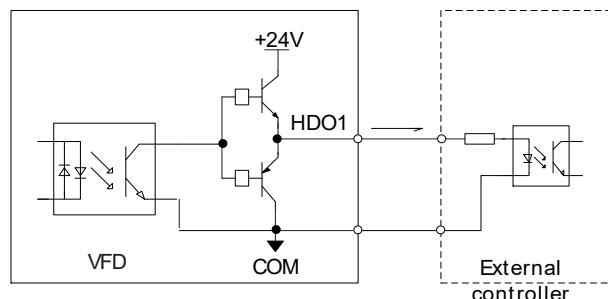



Figure 4-7 PNP (sourcing) wiring

- **Digital output signal wiring**

HDO1 can act as a digital input channel, in addition to high frequency pulse input channel. P06.00=1 can be configured as a DO output, default NPN output, reversed to PNP output by P06.09 polarity.

When P06.00=1, it can be configured as normal DO terminal. NPN output is used by default, which can be reversed to PNP output by setting P06.09.

Figure 4-8 HDO1 terminal wiring

Note: When HDO1 uses PNP output, ensure that the total current of the DO output at 24V and the +24V control terminal does not exceed 100mA.

4.5.3.2. Analog input signal wiring

When the analog input terminal is connected to a weak signal, it is easily interfered by external noise. Therefore, shielded twisted pair cables are generally used, and the wiring distance should be within 20m. The lead line of the shield layer should be as short as possible and need to be fixed to the inverter signal grounding with screws, as shown in Figure 4 21.

Figure 4-9 Analog input terminal wiring

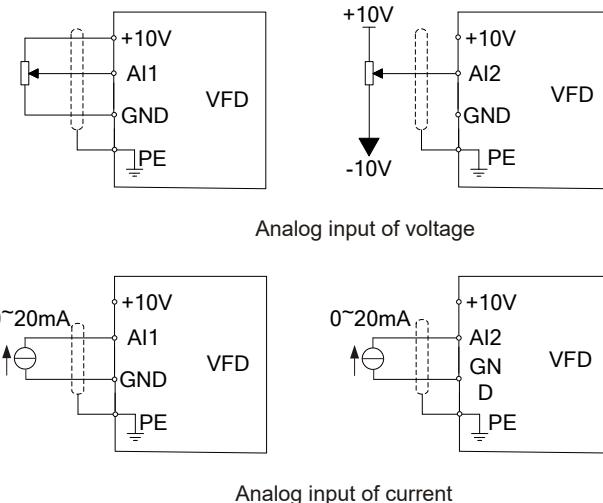
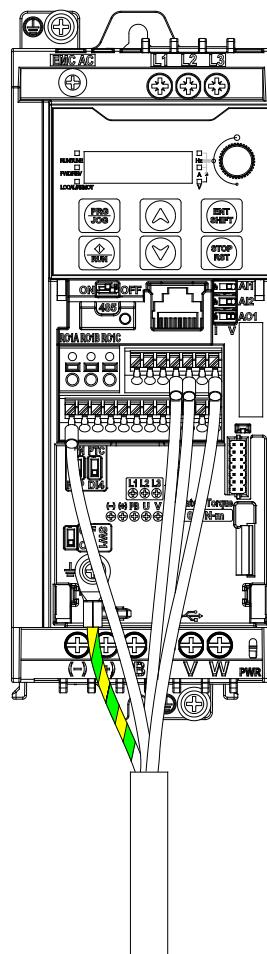
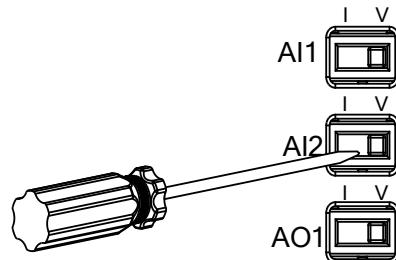
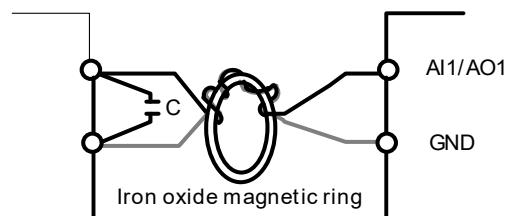
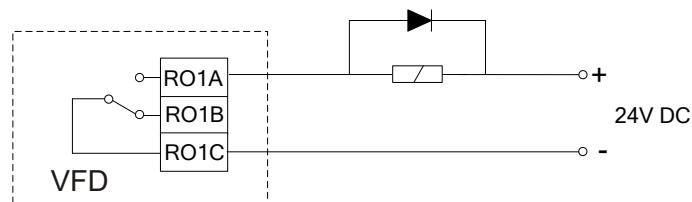
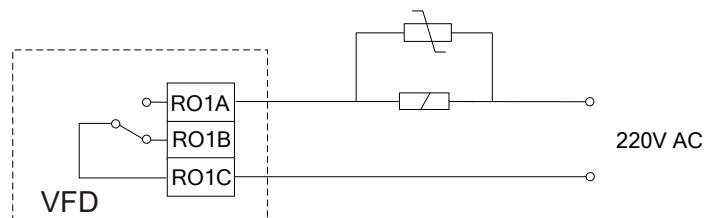




Figure 4-10 PE shield layer wiring



Note:

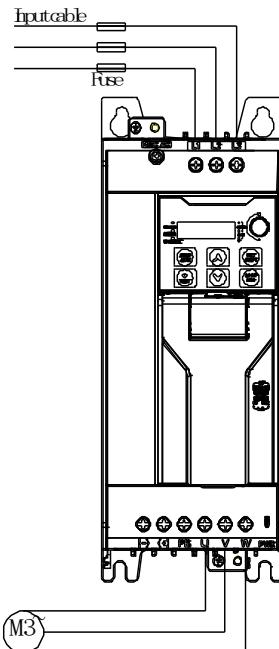
- When selecting current signal input for AI1 or AI2, use the screwdriver to turn the AI1 or AI2 toggle switch to the "I" side.
- When selecting current signal output for AO1, use the screwdriver to turn the AO1 toggle switch to the "I" side.

In some cases where the analog signal is severely disturbed, a filtering capacitor or magnetic ring needs to be installed on the analog signal source side. At least 3 turns are required to pass through the same phase.

4.5.3.3. Relay output wiring

Since inductive loads (relays, contactors, and motors) can cause voltage transients when the power is off, it is necessary to add protective devices such as VDRs, or diodes close to the inductive load ends. Do not add protective devices at the relay output ends.


4.6. Power distribution protection

Warning	
	Do not connect any power source to the inverter output terminals U, V and W. The voltage applied to the motor cable may cause permanent damage to the inverter.

- **Power cable and inverter protection**

In case of short circuit, the fuse protects input power cables to avoid damage to the inverter; if internal short-circuit occurs to the inverter, it can protect neighboring equipment from being damaged. Figure 4 23 shows the wiring.

Figure 4-11 Fuse configuration

 Note: Select the fuse according to section E.2 Breaker, fuse, and electromagnetic contactor.

- **Motor and motor cable short-circuit protection**

If the motor cable is selected based on inverter rated current, the inverter is able to protect the motor cable and motor without other protective devices during short circuit.

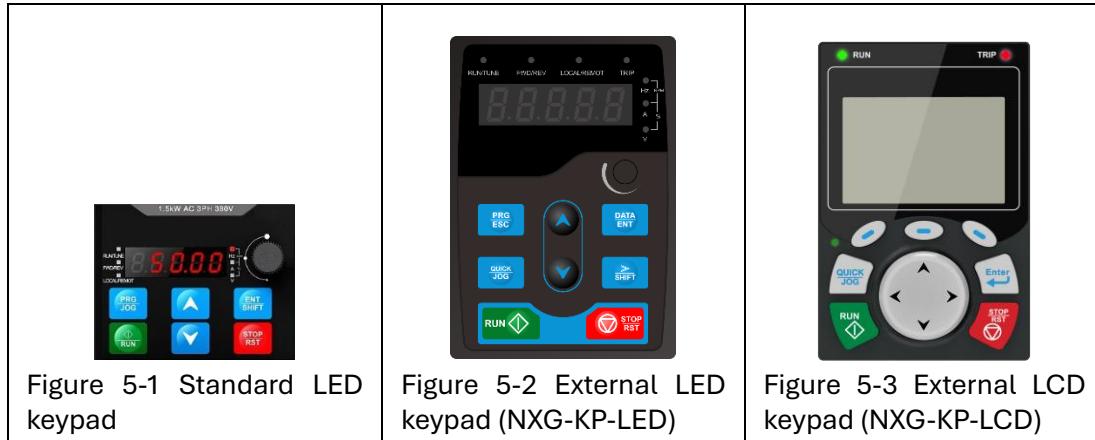
Note: If the inverter is connected to multiple motors, use a separate thermal overload switch or breaker to protect the cable and motor, which may require the fuse to cut off the short circuit current.

- **Motor thermal overload protection**

Once overload is detected, the power supply must be cut off. The inverter is equipped with the motor thermal overload protection function, which can block output and cut off the current (if necessary) to protect the motor.

- **Bypass connection protection**

In some critical scenarios, the power/variable frequency conversion circuit needs to be configured to ensure proper operation of the system when a fault occurs to the inverter.


In some special scenarios, such as in soft startup, power-frequency running is directly performed after the startup, which requires bypass connection.

If inverter status needs to be switched frequently, you can use the switch which carries mechanical interlock or a contactor to ensure motor terminals are not connected to input power cables and inverter output ends simultaneously.

5. Keypad Operation Guidelines

5.1. Keypad introduction

The inverter is embedded with an LED keypad as a standard configuration part. You can use the keypad to control the start and stop, read status data, and set parameters of the inverter. You can also choose an external LED keypad or LCD keypad. The LCD keypad supports multi-language display and 10-line high-definition display. Its overall size is the same as the LED keypad. Both the external LED keypad and LCD keypad support the parameter copy function.

Note:

- For mounting the keypad externally (including LED and LCD keypads), use a standard RJ45 network cable as the extension cable. Mount the keypad on the front panel of the cabinet using M3 screws or an optional keypad bracket.
- When the external keypad is active, the built-in LED keypad remains unaffected, and both can be used simultaneously.
- The maximum keypad cable length is 100m.

5.2. Local LED keypad display and operation

The local LED keypad consists mainly of status indicators, LED digital tube display, and keys.

5.2.1. Keypad panel

5.2.1.1. Status indicator

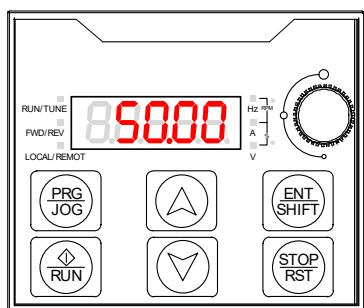
Indicator	Status	Description
RUN/TUNE	■ ON	The inverter is running.
	■ Blink	The inverter is in parameter autotuning.
	■ Off	The inverter is stopped.
FWD/REV	■ ON	The inverter runs reverse.
	■ Off	The inverter runs forward.
LOCAL/REMOT	■ ON	The inverter uses communication as the command running channel.
	■ Blink	The inverter uses terminal as the command running channel.

Indicator	Status	Description	
	■ Off	The inverter uses keypad as the command running channel.	
RUN/TUNE FWD/REV	■ On, displaying the fault code	The inverter is in fault state.	
	■ Blinking at the same time	The inverter is in alarm state.	
Unit indicator	A unit indicator that is on indicates the unit currently displayed on the keypad.		
		Hz	Frequency unit
		RPM	Rotation speed unit
		A	Current unit
		%	Percentage
		V	Voltage unit

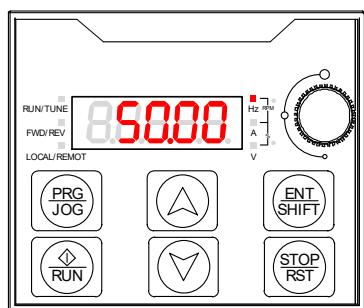
 Note: The unit indicator blinking and turning-on are generally used to distinguish between different stop and running parameter display.

5.2.1.2. Display area

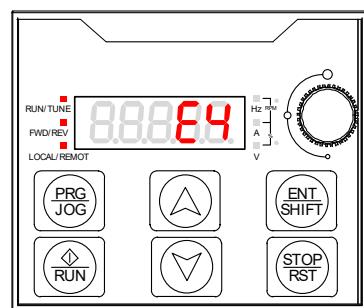
The display area displays a 5-digit value, including fault alarm code, set frequency, output frequency, and functional status data.


Display	Means	Display	Means	Display	Means	Display	Means
0	0	1	1	2	2	3	3
4	4	5	5	6	6	7	7
8	8	9	9	A	A	b	b
C	C	d	d	E	E	F	F
H	H	I	I	L	L	N	N
n	n	0	0	P	P	r	r
S	S	t	t	U	U	v	v
.	.	-	-				

5.2.1.3. Key


Key	Function
	Programming/Multifunction shortcut key Press it to enter or exit level-1 menus or delete a parameter. Press and hold it (at least 1s) to implement the function defined by the ones place of P07.02, which is jogging by default.
	Confirmation/Shifting key Press it to enter menus in cascading mode or confirm the setting of a parameter. Press it to select display parameters in the interface for the inverter in stopped or running state. Press and hold it (at least 1s) or select digits to change during parameter setting.
	Up key Press this key to increase the displayed value or to move upward in a menu.
	Down key Press this key to decrease the displayed value or to move downward in a menu.
	Run key Press this key to start the drive or initiate autotuning when the VFD is operating in keypad control mode.
	Stop/Reset key The function of this key is defined by parameter P07.04. Press this key to stop operation or terminate autotuning during running, or to reset the VFD when a fault alarm is active.
	Potentiometer Local LED keypad potentiometer (AI3).

5.2.2. Keypad display


The keypad display content varies under different states. The following describes the keypad display content under different states.

Stopped-state homepage

Running-state homepage

Fault state homepage

Figure 5- 4 Status homepage display

5.2.2.1. Displaying stopped-state parameters

When the inverter is in stopped state, and the keypad is not in the function code viewing or editing state, the keypad displays stopped-state parameters. By setting P07.08, you can select different stopped-state parameters. Press ENT/SHIFT to switch the parameters.

5.2.2.2. Displaying running-state parameters

When the inverter is in running state, and the keypad is not in the function code viewing or editing state, the keypad displays running-state parameters. By setting P07.05 and P07.06, you can select different running-state parameters. Press ENT/SHIFT to switch the parameters.

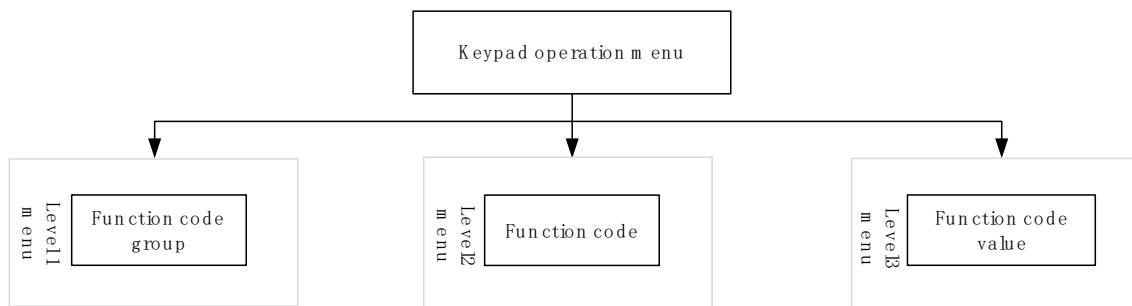
5.2.2.3. Fault display

When the inverter enters a fault state, and the keypad is not in the function code viewing or editing mode, the keypad displays the fault code in flashing mode.

You can reset the fault using one of the following methods:

- The STOP/RST key on the keypad.
- A control terminal input.
- A communication command.

If the fault condition persists, the inverter remains in the fault state, and the fault code continues to flash on the display. When the keypad is in the function code viewing or editing mode, and no operation is performed within 20 seconds, it will automatically return to the fault display screen.


If there is no active fault, and the user enters the third-level menu of a parameter marked with the attribute “●”, the parameter value will remain displayed continuously.

In all other cases, if no key operation occurs within one minute, the keypad automatically returns from the function code viewing/editing state to the corresponding stopped-state or running-state parameter display.

5.2.3. Operation procedure

5.2.3.1. Modifying function parameters

The keypad contains three levels of menus according to operation editing settings.

When the inverter is in stopped, running, or fault display state:

Press PRG/JOG to enter the level-one menu (if a user password has been set, see the description of P07.00).

Under the level-two menu, press ENT/SHIFT to enter the next-level menu.

Under the level-three menu, press ENT/SHIFT to save the current function code value and enter the level-two menu of the next function code.

Note: Under various levels of menus, press PRG/JOG to return to the previous level of menu, press Δ or ∇ to increase or decrease the value of the current blinking bit, and press and hold ENT/SHIFT to switch the blinking bit rightward in circular mode.

If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

It is read only. Read-only parameters include actual detection parameters and running record parameters.

It cannot be modified in running state and can be modified only in stopped state.

The following takes P03.20 as an example to describe how to modify a function parameter in the stopped-state parameter display interface:

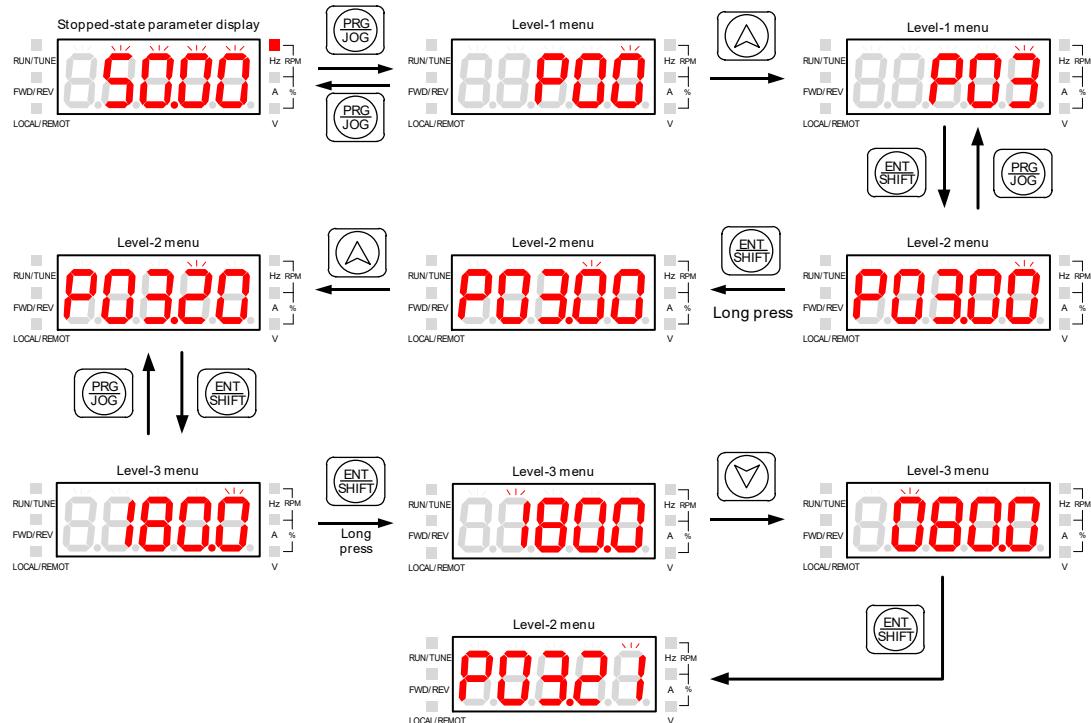


Figure 5-4 Modifying a parameter

Note: When P00.18 is set to 3, any function code value does not blink, and any function code value cannot be modified.

5.2.3.2. Setting a password for the inverter

The inverter provides the user password protection function. When P07.00 is set to a non-zero value, the function code editing state is exited, and password protection will take effect within one minute. After the password takes effect, when the inverter is in the stopped, running, or fault display state, you need to type the user password after pressing the PRG/JOG key to enter the function code viewing and editing state.

The following takes setting the user password 10001 as an example to describe how to set a password for the inverter in the stopped-state parameter display interface:

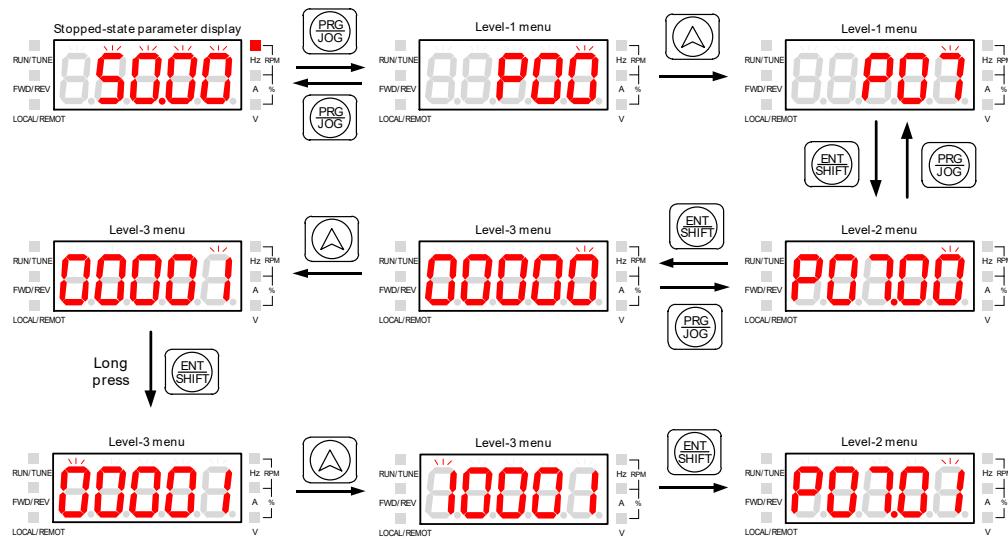


Figure 5-5 Setting a password

5.2.3.3. Viewing function parameters

The inverter provides the status viewing function. The following describes how to view function parameters in the stopped-state parameter display interface when the password is 10001:

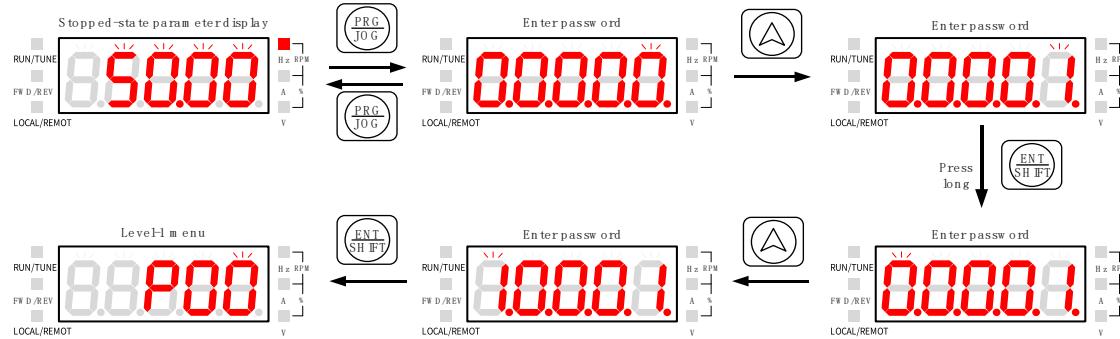
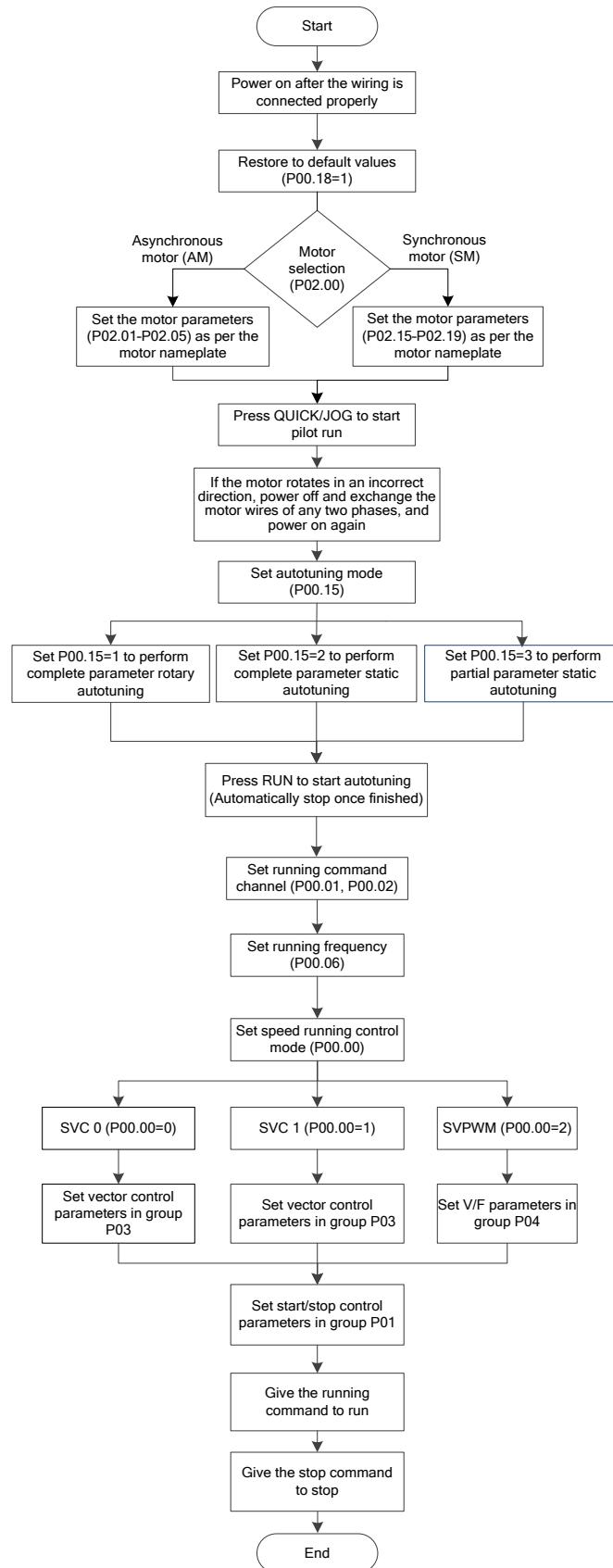



Figure 5-6 Viewing a function code

6. Commissioning

The simplified inverter commissioning flowchart is as follows.

6.1. Motor parameter setting

The product supports the control of three-phase AC asynchronous motors and permanent magnet synchronous motors. The inverter supports the setting of two groups of motor parameters. Motor 1 corresponds to Group P02—Parameters of motor 1, and motor 2 corresponds to Group P34—Parameters of motor 2. Switching between the two sets of motor parameters can be achieved through multifunctional digital input terminals or communication methods.

6.1.1. Motor type selection

You can select the motor type by setting P02.00.

Function code	Name	Default	Setting range	Description
P02.00	Type of motor 1	0	0–1	0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor
P34.00	Type of motor 2	0	0–1	0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor

 Note: The types of motors that are driven at the same type must be the same.

6.1.2. Rated motor parameter setting

- Set the rated parameters of three-phase AC asynchronous motors according to the motor nameplate.

P02.01–P02.05 are used to set parameters of AM 1, and P34.01–P34.05 are used to set parameters of AM 2.

Function code	Name	Default	Setting range	Description
P02.01	Rated power of AM 1	Model dependent	0.1–3000.0kW	-
P02.02	Rated frequency of AM 1	50.00Hz	0.01Hz–P00.03	P00.03 specifies the max. output frequency.
P02.03	Rated speed of AM 1	Model dependent	1–60000Rpm	-
P02.04	Rated voltage of AM 1	Model dependent	0–1200V	-
P02.05	Rated current of AM 1	Model dependent	0.08–600.00A	-
P34.01	Rated power of AM 2	Model dependent	0.1–3000.0kW	-
P34.02	Rated frequency of AM 2	50.00Hz	0.01Hz–P00.03	P00.03 specifies the max. output frequency.

Function code	Name	Default	Setting range	Description
P34.03	Rated speed of AM 2	Model dependent	1–60000Rpm	-
P34.04	Rated voltage of AM 2	Model dependent	0–1200V	-
P34.05	Rated current of AM 2	Model dependent	0.8–6000.0A	-

- Set the rated parameters of three-phase permanent magnetic synchronous motors according to the motor nameplate.

P02.15–P02.19 are used to set parameters of SM 1, and P34.15–P34.19 are used to set parameters of SM 2.

Function code	Name	Default	Setting range	Description
P02.15	Rated power of SM 1	Model dependent	0.1–3000.0kW	-
P02.16	Rated frequency of SM 1	50.00Hz	0.01Hz–P00.03	P00.03 specifies the max. output frequency.
P02.17	Number of pole pairs of SM 1	2	1–128	-
P02.18	Rated voltage of SM 1	Model dependent	0–1200V	-
P02.19	Rated current of SM 1	Model dependent	0.08–600.00A	-
P34.15	Rated power of SM 2	Model dependent	0.1–3000.0kW	-
P34.16	Rated frequency of SM 2	50.00Hz	0.01Hz–P00.03	P00.03 specifies the max. output frequency.
P34.17	Number of pole pairs of SM 2	2	1–128	-
P34.18	Rated voltage of SM 2	Model dependent	0–1200V	-
P34.19	Rated current of SM 2	Model dependent	0.8–6000.0A	-

6.1.3. Motor switchover

Set P05.01–P05.08, P05.11, or P08.31 to switch between two sets of motor parameters. There are two switching methods.

- Method 1 Switching through multifunction digital input terminal function setting

Set any one terminal function from P05.01–P05.08 or P05.11 to 32.

Function code	Name	Default	Setting range	Description
P05.01– P05.08	DI1–DI8 terminal function selection	1	0–95	32: Motor switchover Note: DI5–DI8 are virtual terminals enabled by P05.16 and can only be modified through communication. For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols, see the PZD receiving function code options.
		4		
		7		
		0		
		0		
		0		
		0		
		0		
P05.11	Function of HDI1	0		

- Method 2 Switch through communication

Set the ones place of P08.31 to a value greater than zero and select any channel to switch between motor 1 and motor 2. For example, during Modbus/Modbus TCP communication, it is switched by bit 0 of address 2009H. For other communication methods, see their corresponding control words.

Function code	Name	Default	Setting range	Description
P08.31	Motor switchover selection	0x00	0x00–0x14	Ones place: Switchover channel 0: Terminal 1: Modbus/Modbus TCP communication 2: Reserved 3: Ethernet 4: EtherCAT/PROFINET/EtherNet IP communication Tens place: indicates whether to enable switchover during running 0: Disable 1: Enable

6.2. Parameter autotuning setting

To optimize motor control performance, it is recommended to set the motor's rated parameters according to the motor nameplate after the first power-on and then perform parameter autotuning. The inverter parameter autotuning includes motor parameter autotuning and motor inertia autotuning. You can select an autotuning mode based on actual conditions.

6.2.1. Motor parameter autotuning

Motor parameters significantly affect the accuracy of the control model. In vector control mode, motor parameter autotuning must be performed before operation.

After entering the rated motor parameters, set P00.15 to select the autotuning method. The setting procedure is as follows:

Step 1 Set P00.01 to 0 to select the keypad.

Step 2 Set P00.15 to choose one of the three motor parameter autotuning methods. Enter a value greater than 0, then press ENT/SHIFT to confirm. The keypad will display “-TUN-”.

Step 3 Press RUN to start the autotuning process. During autotuning, the display shows the current step (for example, “TUN-1” for step 1). When the process is complete, the display shows “-End-”.

Function code	Name	Default	Setting range	Description
P00.15	Motor parameter autotuning	0	0-3	0: No operation 1: Complete parameter rotary autotuning 2: Complete parameter static autotuning 3: Partial parameter static autotuning

Note:

- When P00.15 is set to 1, disconnect the motor from the load to ensure the motor in a static and no-load state.
- When P00.15 is set to 2 or 3, there is no need to disconnect the motor from the load.
- Motor autotuning can only be performed on the currently connected motor.
- To autotune another motor, switch to that motor before running autotuning.

Table 6-1 Motor parameters obtained in different autotuning methods

Setting of P00.15	Autotuning parameters			
	AM 1	AM 2	SM 1	SM 2
1	P02.06-P02.14	P34.06-P34.14	P02.20-P02.23	P34.20-P34.23
2	P02.06-P02.10	P34.06-P34.10	P02.20-P02.22	P34.20-P34.22

3	P02.06–P02.08	P34.06–P34.08		
---	---------------	---------------	--	--

Note: The synchronous motor back-EMF constant P02.23/P34.23 can also be calculated based on the parameters on the motor nameplate, and there are three calculation methods.

Method 1: If the back-EMF coefficient K_e is marked on the nameplate, the calculation is as follows:

$$E = (K_e * n_N * 2\pi) / 60$$

Method 2: If the back-EMF E' (unit: V/1000r/min) is marked on the nameplate, the calculation is as follows:

$$E = E' * n_N / 1000$$

Method 3: If none of the two preceding parameters is marked on the nameplate, the calculation is as follows:

$$E = P / (\sqrt{3} * I)$$

In the preceding formulas, " n_N " indicates the rated rotation speed, " P " indicates the rated power, and " I " indicates the rated current.

6.2.2. Motor inertia identifying

Motor inertia identification is used in scenarios where large inertia exists, and the fast dynamic response follows well in vector control mode. It must be performed before enabling inertia compensation.

During the identification process, the inverter automatically controls the start and stop of the motor and indicates when the autotuning is complete.

For motor inertia identification, set P03.44 for Motor 1 (Motor 2 is specified by P35.44) as follows:

1. Set P00.01 = 0 to select keypad control mode.
2. Set P03.44 = 1 to enable inertia identification.
3. Press RUN to start the inverter. The inverter will automatically control the motor start and stop and complete the inertia identification process.

Function code	Name	Default	Setting range	Description
P03.43	Motor 1 inertia identification torque	10.0%	0.0–100.0% (Motor rated torque)	Set the identification torque to overcome friction and ensure accurate inertia measurement.
P35.43	Motor 2 inertia identification torque			
P03.44	Enabling motor 1 inertia identification	0	0–1	0: Disable 1: Enable
P35.44	Enabling motor 2 inertia identification			

Note: If the motor runs at low speed for an extended time (indicating P03.43 is too low), perform a manual stop, increase P03.43, and repeat inertia identification.

6.3. Running command selection

Running commands control the inverter start, stop, forward/reverse rotation, and jogging. The channels of running commands include keypad, terminal, and communication. Set P00.01 to select a channel of running commands.

Function code	Name	Default	Setting range	Description
P00.01	Channel of running commands	0	0–2	0: Keypad 1: Terminal 2: Communication

- **Keypad**

When P00.01 = 0, use the RUN and STOP/RST keys on the keypad:

- Press RUN to start the inverter; the RUN indicator illuminates.
- Press STOP/RST to stop the inverter; the RUN indicator turns off.

For detailed keypad operations, see Chapter 5 – Keypad Operation Guidelines.

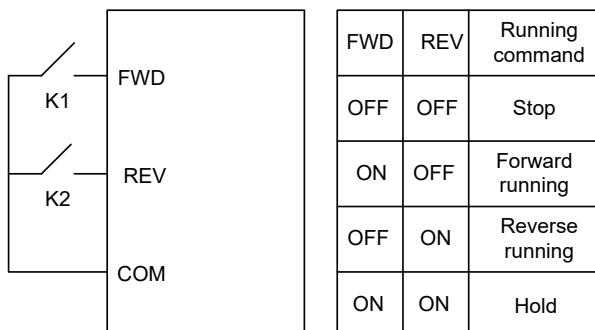
- **Terminal**

When P00.01 = 1, use digital inputs (DI) to control start/stop and direction. The setting procedure is as follows:

Step 1 Set P05.01–P05.08 and P05.11 to the required running commands. For example, if you need to set DI2 to reverse running, set P05.02 to 2.

Function code	Name	Default	Setting range	Description
P05.01–P05.08	DI1–DI8 terminal function selection	1	0–95	1: Run Forward (FWD)
		4		2: Run Reverse (REV)
		7		3: Three-wire control (D_{in})
		0		4: Jog Forward
		0		5: Jog Reverse
		0		6: Coast to Stop
		0		7: Reset Faults
		0		Note: DI5–DI8 are virtual terminals enabled by P05.16 and can only be modified through communication. For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols,
P05.11	Function of HDI1	0		

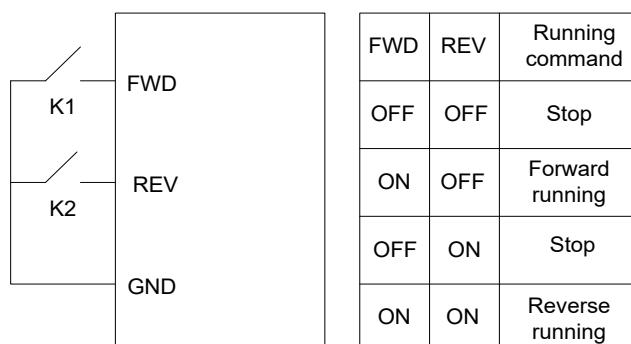
Function code	Name	Default	Setting range	Description
				see the PZD receiving function code options.


Step 2 Set P05.17 to select the terminal control mode.

Function code	Name	Default	Setting range	Description
P05.17	Terminal control mode	0	0–3	0: Two-wire control mode 1 1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2

Two-wire control mode 1: P05.17=0

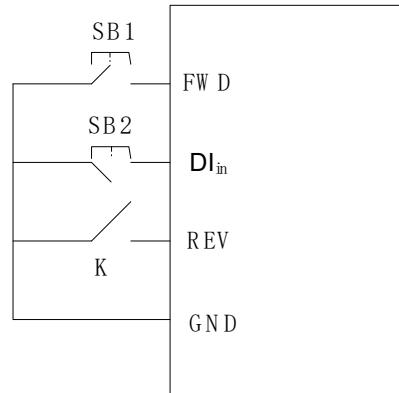
In this mode, the enable and direction functions are combined. This configuration is commonly used in general applications.


The FWD/REV terminal directly determines the motor rotation direction.

Two-wire control mode 2: P05.17=1

In this mode, the enable function is separated from the direction control.

The FWD terminal serves as the enable input, while the motor rotation direction is determined by the state of the REV terminal.



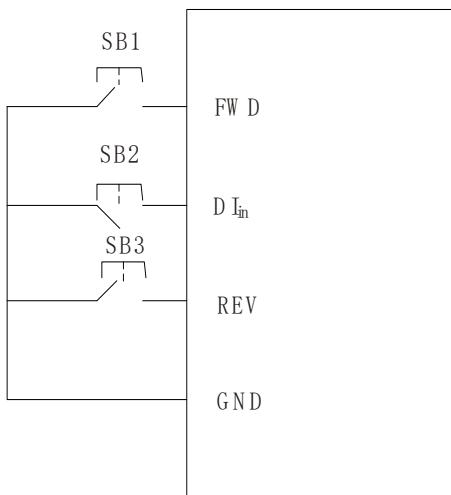
Three-wire control mode 1: P05.17=2

In this mode, the Dlin terminal serves as the enable input, while the FWD terminal generates the run command. The direction of rotation is determined by the state of the REV terminal.

During operation, the Dlin terminal must remain closed. When a rising edge signal is detected on the FWD terminal, the inverter starts running in the direction defined by the current state of the REV terminal.

To stop the inverter, the Dlin terminal must be opened (disconnected).

The direction control is as follows during running:


DI _{in}	REV	Previous direction	Present direction
ON	OFF→ON	FWD run	REV run
		REV run	FWD run
ON	ON→OFF	REV run	FWD run
		FWD run	REV run
ON→OFF	ON	Decelerate to stop	
	OFF		

Three-wire control mode 2: P05.17=3

In this mode, the Dlin terminal functions as the enable input, while the FWD or REV terminals generate the run command. The direction of rotation is determined by the states of both FWD and REV terminals.

During operation, the Dlin terminal must remain closed. A rising edge signal on either the FWD or REV terminal initiates the inverter run command and determines the corresponding running direction.

To stop the inverter, the Dlin terminal must be opened (disconnected).

The direction control is as follows during running:

DI _{in}	FWD	REV	Running direction
ON	OFF→ON	ON	FWD run
		OFF	FWD run
ON	ON	OFF→ON	REV run
	OFF		REV run
ON→OFF	-	-	Decelerate to stop

Note: In two-wire control mode, when the FWD/REV terminal signal is active, if the inverter stops due to a stop command issued from another control source, the inverter will not automatically restart once that stop command is cleared — even if the FWD/REV terminal signal remains valid. To restart the inverter, the FWD/REV signal must be re-triggered. This behavior applies in scenarios such as:

- PLC single-cycle stop
- Fixed length stop
- Valid STOP/RST stop during terminal control

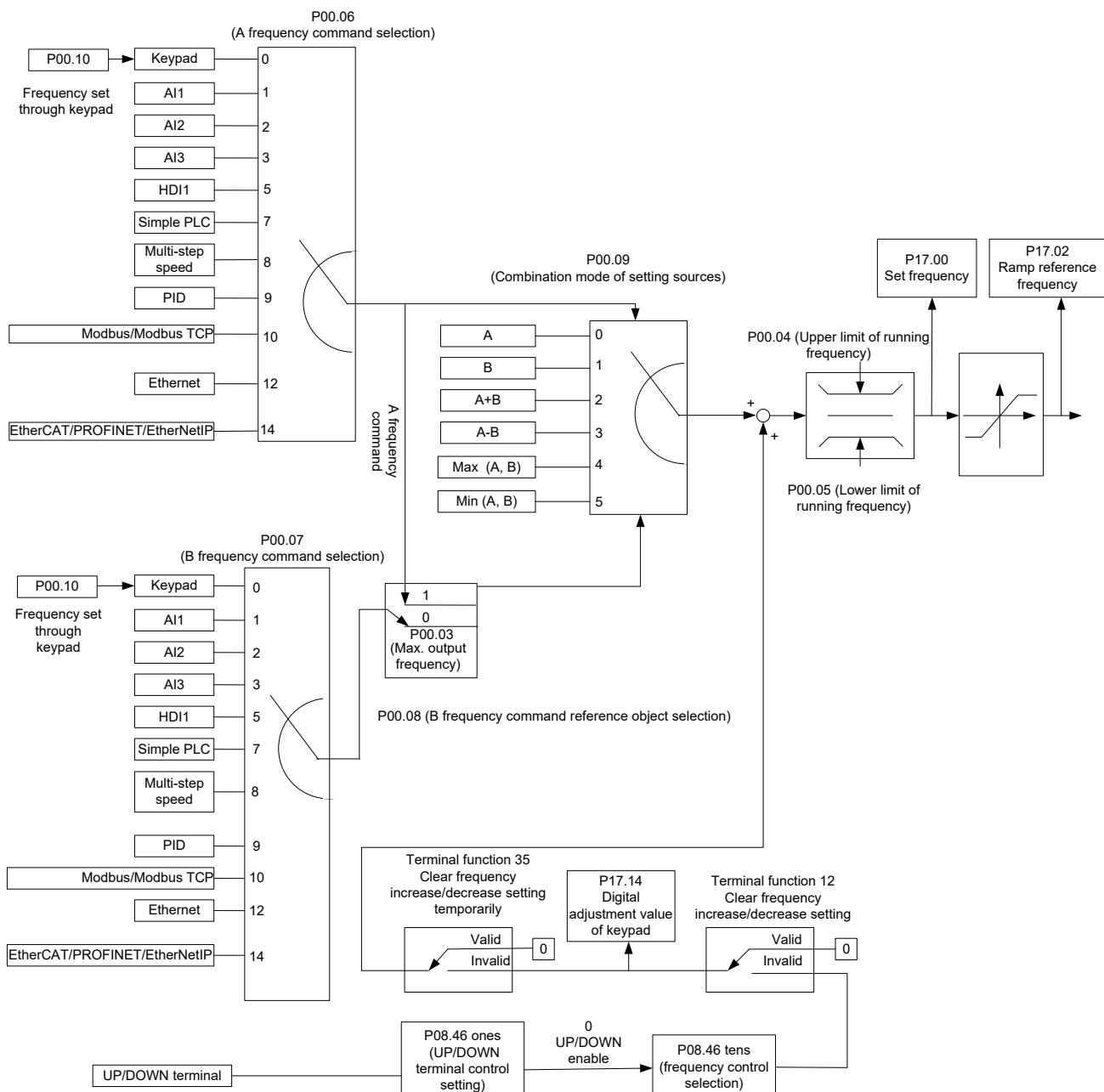
For detailed configuration, refer to parameter P07.04.

- Communication

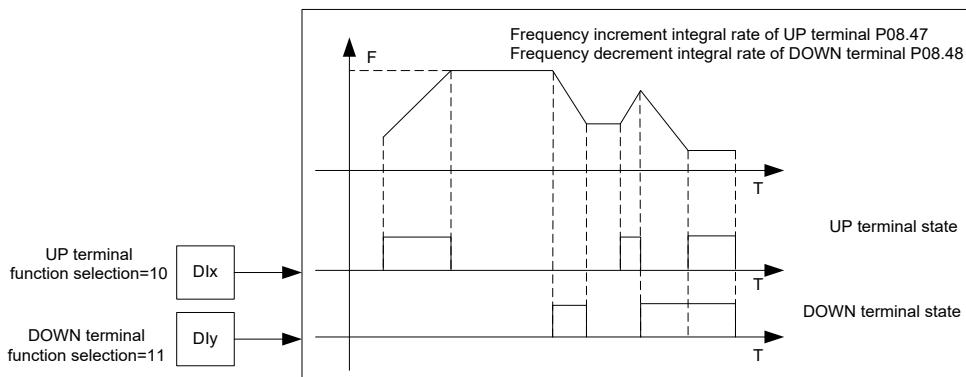
When P00.01 is set to 2, you can control the inverter start or stop by setting commands through communication. For details, see chapter 7 Communication.

Function code	Name	Default	Setting range	Description
P00.02	Communication mode of running commands	0	0–6	0: Modbus/Modbus TCP 2: Ethernet

Function code	Name	Default	Setting range	Description
				3: EtherCAT/PROFINET/EtherNet IP Others: Reserved


6.4. Frequency setting

The inverter supports multiple frequency reference modes, which are categorized into two types: main reference channels and auxiliary reference channels.


The inverter provides two main frequency reference channels, designated as Frequency Reference Channel A and Frequency Reference Channel B. These two channels support simple arithmetic operations (such as addition or subtraction) between each other and can be dynamically switched during operation to meet control requirements.

In addition, the inverter includes one auxiliary frequency reference channel, known as the UP/DOWN terminal. By configuring parameter P08.46, you can enable the reference mode associated with the UP/DOWN terminal and define its influence on the overall inverter frequency reference.

The actual frequency command of the inverter is determined by the combined effect of the main and auxiliary reference channels. The schematic diagram is as follows:

When parameter P05.01 or P05.02 is set to 10 or 11, the corresponding terminal DI1 or DI2 functions as the UP or DOWN terminal, respectively. When the DI1 or DI2 terminal is closed, the reference frequency increases or decreases rapidly. The rate of increase or decrease is determined by parameters P08.47 (UP rate) and P08.48 (DOWN rate). See the following figure.

6.4.1. Combination of frequency setting source

6.4.1.1. Combination mode of setting source

Set P00.09 to select the combination mode of setting source.

Function code	Name	Default	Setting range	Description
P00.09	Combination mode of setting source	0	0–5	0: A 1: B 2: (A+B) 3: (A- B) 4: Max(A, B) 5: Min. (A, B)

6.4.1.2. Frequency channel switchover

You can set any of function codes P05.01–P05.08 or P05.11 to any of functions 13–15 to switch frequency channels. The setting procedure is as follows:

Step 1 Select any one of multifunction digital input terminals DI1–DI8, and HDI1 as an external input terminal.

Step 2 Set P05.01–P05.08 and P05.11 to any one of 13–15.

Function code	Name	Default	Setting range	Description
P05.01–P05.08	DI1–DI8 Terminal function selection	1	0–95	13: Switch between A setting and B setting 14: Switch between combination setting and A setting 15: Switch between combination setting and B setting
		4		
		7		
		0		
		0		
		0		
		0		
		0		

Function code	Name	Default	Setting range	Description
		0		
P05.11	Function of HDI1	0		

The combinations are described in the following table:

Present reference channel P00.09	Multifunction digital input terminal function 13 (Switch from channel A to channel B)	Multifunction digital input terminal function 14 (Switch from combined setting to channel A)	Multifunction digital input terminal function 15 (Switch from combined setting to channel B)
A	B	-	-
B	A	-	-
A+B	-	A	B
A-B	-	A	B
Max(A, B)	-	A	B
Min(A, B)	-	A	B

6.4.2. Frequency setting method

The inverter provides multiple frequency setting methods. You can set P00.06 and P00.07 to select the A and B frequency channel setting methods.

Function code	Name	Default	Setting range	Description
P00.06	Setting channel of A frequency command	0		0: P00.10 1: AI1 2: AI2 3: AI3 5: High-speed pulse HDI1 7: Simple PLC program 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved
P00.07	Setting channel of B frequency command	1	0-15	

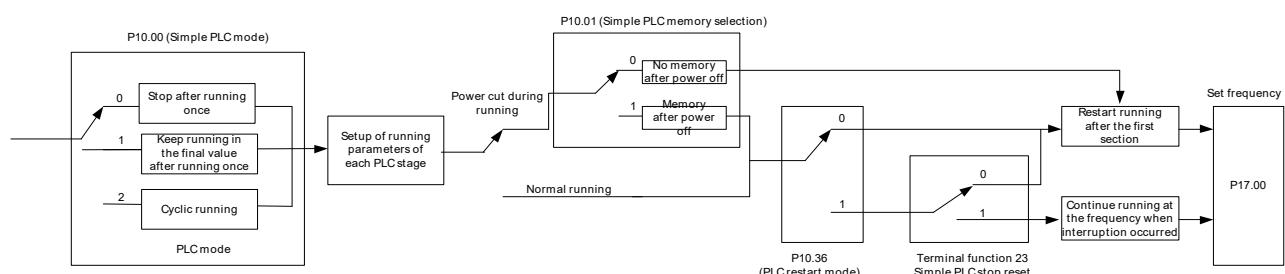
6.4.2.1. Setting frequency through keypad

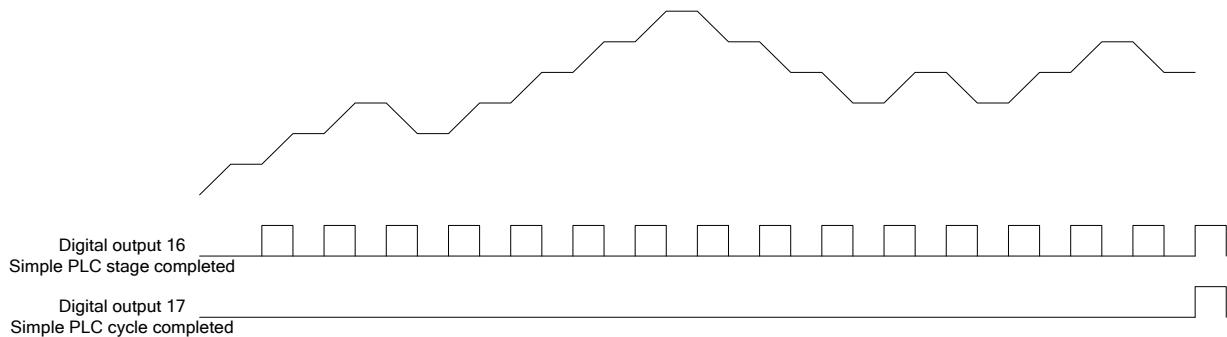
When P00.06 or P00.07 (Setting channel of A or B frequency command) is set to 0 (keypad digital as the setting channel), and P00.10 specifies the initial value of the digital setting-based inverter frequency.

Function code	Name	Default	Setting range	Description
P00.10	Setting frequency through keypad	50.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency. When the setting channel of A and B frequency commands is keypad, P00.10 specifies the initial value of the digital setting-based inverter frequency.

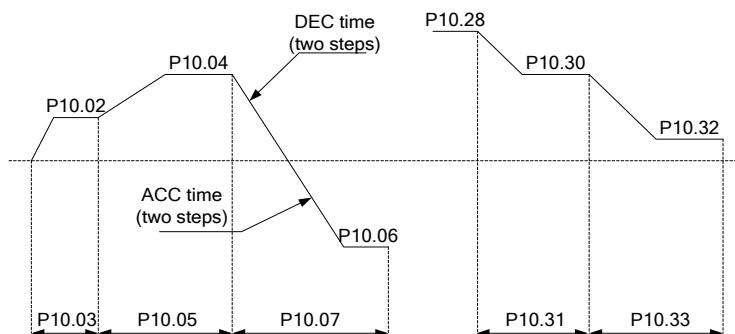
6.4.2.2. Setting frequency through analog

You can set P00.06 or P00.07 to 1, 2, or 3 (setting frequency through analog). For details, see section 6.9.2 Analog input and output terminal functions.


6.4.2.3. Setting frequency through high-speed pulse HDI


You can set P00.06 or P00.07 to 5 (setting frequency through high-speed pulse).

6.4.2.4. Setting frequency through simple PLC


You can set P00.06 or P00.07 to 7 (setting frequency through simple PLC).

Simple PLC is a multi-step speed generator, and the inverter can change the running frequency and direction automatically based on the running time to fulfill process requirements. The inverter can realize 16-step speed control and provide four groups of acceleration/deceleration time for selection. After the set PLC completes one cycle (or one step), one ON signal can be output by the multifunction relay. See the following figure.

When simple PLC is selected for frequency giving, you need to set P10.02–P10.33 to determine the running frequency and running time of each step. The schematic diagram is as follows:

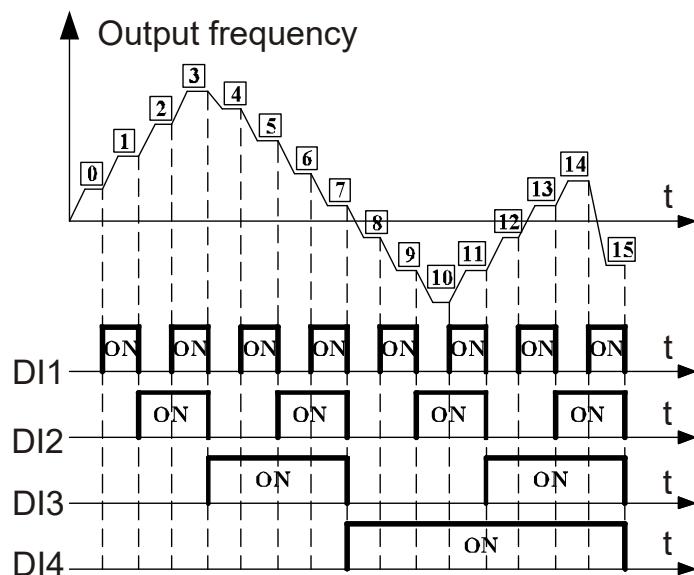
Note: The sign of multi-step speed determines the running direction of simple PLC, and a negative value means reverse running. acceleration time indicates the time needed for the inverter to accelerate from 0Hz to the max. output frequency (P00.03). deceleration time means the time needed if the inverter speeds down from the max. output frequency (P00.03) to 0Hz. Select corresponding acceleration/deceleration time and then convert 16-bit binary number into hexadecimal number, finally, and then set corresponding function codes.

Function code	Name	Default	Setting range	Description
P00.11	Acceleration time 1	Model dependent	0.0–3600.0s	The inverter has four groups of acceleration/deceleration time, which can be selected by multifunction digital input terminal function 21 or 22 (specified by P05). The factory default acceleration/deceleration time of the inverter is the first group.
P00.12	Deceleration time 1	Model dependent		
P08.00	Acceleration time 2	Model dependent		
P08.01	Deceleration time 2	Model dependent		
P08.02	acceleration time 3	Model dependent		
P08.03	Deceleration time 3	Model dependent		
P08.04	Acceleration time 4	Model dependent		

Function code	Name	Default	Setting range	Description
P08.05	Deceleration time 4	Model dependent		
P10.34	Acceleration /Deceleration time of steps 0–7 of simple PLC	0x0000	0x0000–0xFFFF	Select corresponding acceleration/deceleration time, and then convert 16-bit binary number into hexadecimal number, finally, and then set corresponding function codes. For details, see the following table.
P10.35	Acceleration /Deceleration time of steps 8–15 of simple PLC	0x0000		

The description is as follows:

Function code	Binary		Step	ACC/DEC time 1	ACC/DEC time 2	ACC/DEC time 3	ACC/DEC time 4
P10.34	Bit1	Bit0	0	00	01	10	11
	Bit3	Bit2	1	00	01	10	11
	Bit5	Bit4	2	00	01	10	11
	Bit7	Bit6	3	00	01	10	11
	Bit9	Bit8	4	00	01	10	11
	Bit11	Bit10	5	00	01	10	11
	Bit13	Bit12	6	00	01	10	11
	Bit15	Bit14	7	00	01	10	11
P10.35	Bit1	Bit0	8	00	01	10	11
	Bit3	Bit2	9	00	01	10	11
	Bit5	Bit4	10	00	01	10	11
	Bit7	Bit6	11	00	01	10	11
	Bit9	Bit8	12	00	01	10	11
	Bit11	Bit10	13	00	01	10	11
	Bit13	Bit12	14	00	01	10	11
	Bit15	Bit14	15	00	01	10	11


6.4.2.5. Setting frequency through multi-step speed commands

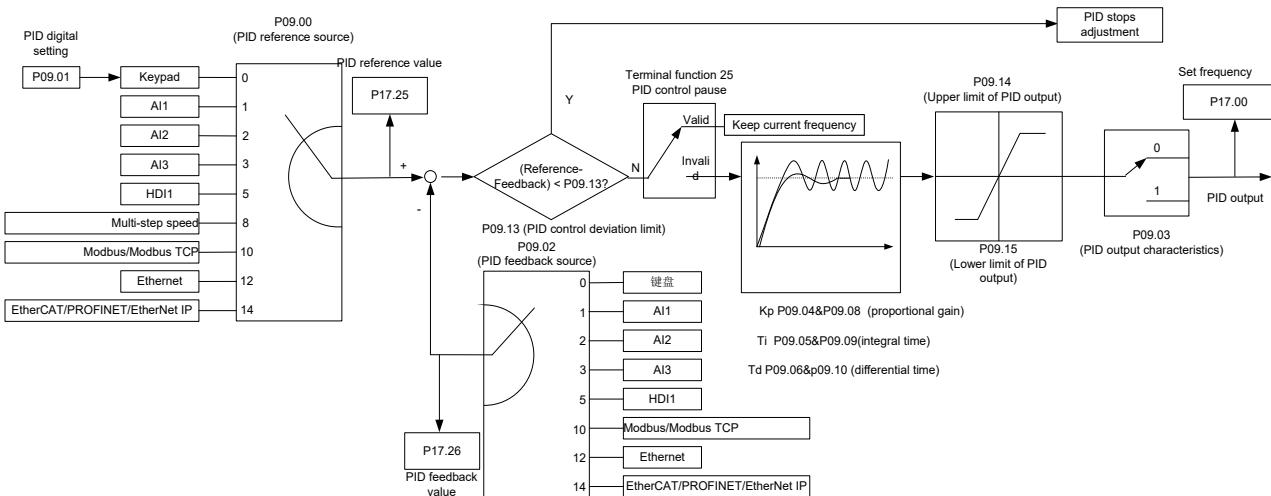
Set P00.06 or P00.07 to 8 to enable frequency control via multi-step speed commands. This mode is suitable for applications requiring only a limited set of discrete frequency values rather than continuous adjustment.

The inverter supports 16-step speed settings, determined by the combined states of multi-step terminals 1–4, configured through DI terminals corresponding to function codes P05.01–P05.11. These combinations correspond to multi-step speeds 0 through 15.

- When terminals 1, 2, 3, and 4 are all OFF, the frequency input mode follows P00.06 or P00.07.
- When any of terminals 1–4 is ON, the frequency is controlled by the multi-step speed. The multi-step speed setting takes precedence over keypad, analog, high-speed pulse, PID, and communication inputs.

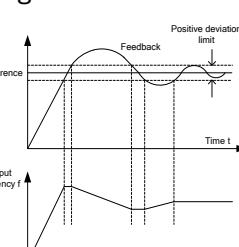
Note: The sign of the multi-step speed determines the running direction of the simple PLC. A negative value indicates reverse rotation. For detailed information, refer to Section 6.4.2.4 — Setting Frequency through Simple PLC.

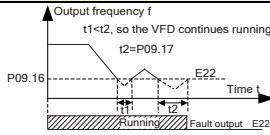
Step	0	1	2	3	4	5	6	7
Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Terminal 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Terminal 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Terminal 4	OFF							
Step	8	9	10	11	12	13	14	15
Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Terminal 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Terminal 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Terminal 4	ON							


Function code	Name	Default	Setting range	Description
P05.01- P05.08	DI1-DI8 terminal function selection	1	0-95	16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Pause multi-step speed running
		4		
		7		
		0		
		0		
		0		
		0		
		0		
		0		
P05.11	Function of HDI1	0		
P10.02- P10.32	Multi-step speeds 0-15 and running time	0.0%	Frequency: -300.0%– 300.0%	The setting 100.0% corresponds to the max. output frequency (P00.03).
		0.0s (min)	Time: 0.0– 6553.5s(min)	The time unit is specified by P10.37.

6.4.2.6. Setting frequency through PID control

Set P00.06 or P00.07 to 9 to enable frequency control via PID control.


PID control is a standard method for process regulation. It adjusts the inverter output frequency or output voltage to form a negative feedback system, maintaining the controlled variable at or near the target value. This mode is suitable for applications such as flow control, pressure control, temperature control, and similar processes.


The following diagram illustrates the basic PID block schematic for output frequency regulation.

Function code	Name	Default	Setting range	Description
P09.00	PID reference source selection	0	0–15	<p>When P00.06 or P00.07 (Setting channel of A or B frequency command) is 9 or P04.13 (Voltage setting channel) is 9, the inverter is process PID controlled.</p> <p>The function code determines the target given channel during the PID process.</p> <p>0: Setting through P09.01 1: AI1 2: AI2 3: AI3 5: High-speed pulse HDI1 8: Multi-step speed running 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved</p> <p>The set target of process PID is a relative value, for which 100% equals 100% of the feedback signal of the controlled system. The system always performs calculation by using a relative value (0–100.0%).</p>
P09.01	PID digital setting	0.0%	-100.0%–100.0%	The function code is mandatory when P09.00=0. The base value of P09.01 is the feedback of the system.
P09.02	PID feedback source selection	0	0–15	<p>0: Setting through P09.01 1: AI1 2: AI2 3: AI3 5: High-speed pulse HDI1 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved</p>

Function code	Name	Default	Setting range	Description
				Note: The reference channel and feedback channel cannot be duplicated. Otherwise, effective PID control cannot be achieved.
P09.03	PID output characteristics selection	0	0–1	0: PID output is positive. When the feedback signal is greater than the PID reference value, the output frequency of the inverter will decrease to balance the PID. Example: PID control on strain during unwinding. 1: PID output is negative. When the feedback signal is greater than the PID reference value, the output frequency of the inverter will increase to balance the PID. Example: PID control on tension during unwinding
P09.04	Low frequency proportional gain (Kp)	1.00	0.00–100.00	Low-frequency switching point: 5.00Hz, high-frequency switching point: 10.00Hz (P09.04 corresponds to high-frequency parameter), and the middle is the linear interpolation between these two points.
P09.05	Low frequency integral time (Ti)	0.90s	0.00–10.00s	-
P09.06	Low frequency differential time (Td)	0.00s	0.00–10.00s	-
P09.07	Low frequency point for PID parameter switching	5.00Hz	0.00Hz–P09.11	-
P09.08	High frequency proportional gain (Kp)	1.80	0.00–100.00	-
P09.09	High frequency integral time (Ti)	0.90s	0.00–10.00s	-
P09.10	High frequency differential time (Td)	0.00s	0.00–10.00s	-

Function code	Name	Default	Setting range	Description
P09.11	High frequency point for PID parameter switching	10.00Hz	P09.07–P00.03	-
P09.12	Sampling period (T)	0.001s	0.000–1.000s	Used to indicate the sampling cycle of feedback. The regulator calculates in each sampling cycle. A longer sampling cycle indicates slower response.
P09.13	PID control deviation limit	0.0%	0.0–100.0%	Used to adjust the accuracy and stability of the PID system. The output value of the PID system is relative to the max. deviation of the closed loop reference. As shown in the following figure, the PID regulator stops regulating in the range of deviation limit.
P09.14	PID output upper limit	100.0%	P09.15–100.0% (Relative to the max. frequency)	Used to set the upper limit of PID regulator output values.
P09.15	PID output lower limit	0.0%	-100.0%–P09.14 (Relative to the max. frequency)	Used to set the lower limit of PID regulator output values.
P09.16	Feedback offline detection value	0.0%	0.0–100.0%	When the feedback value is smaller than or equal to the feedback offline detection value, and the duration exceeds the value specified by P09.17, the inverter reports "PID feedback offline fault", and the keypad displays "E22".
P09.17	Feedback offline detection time	1.0s	0.0–3600.0s	

Function code	Name	Default	Setting range	Description
P09.18	PID control selection	0x0001	0x0000–0x1111	<p>Ones place: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit</p> <p>Tens place: 0: Same as the main reference direction 1: Contrary to the main reference direction</p> <p>Hundreds place: 0: Limit as per the max. frequency 1: Limit as per A frequency</p> <p>Thousands place: 0: A+B frequency. Acceleration/Deceleration of main reference A frequency source pre-charging is invalid. 1: A+B frequency, acceleration/ deceleration of main reference A frequency source pre-charging is valid, acceleration/deceleration is determined by P08.04 (acceleration time 4).</p>
P09.19	Acceleration/Deceleration time of PID command	0.0s	0.0–1000.0s	-
P09.20	PID output filter time	0.000s	0.000–10.000s	-
P17.00	Set frequency	0.00Hz	0.00Hz–P00.03	-
P17.25	PID reference value	0.0%	-100.0–100.0%	-
P17.26	PID feedback value	0.0%	-100.0–100.0%	-

Proportional regulation (Kp)

Proportional control can respond to feedback changes rapidly; however, it cannot eliminate the static difference by itself. A larger proportional gain indicates a faster regulating speed, but a too large gain will result in oscillation. To solve this problem, set the integral time to a large value and the differential time to 0 to run the system, and then change the reference to observe the difference (that is, static difference) between the feedback signal and reference. If the static difference occurs in the direction of reference change (such as reference increase, where the feedback is always less than the reference after system stabilizes), continue increasing the proportional gain; otherwise, decrease the proportional gain. Repeat this process until the static difference becomes small.

Function code	Name	Description
P09.04, P09.08	Proportional gain (Kp)	The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID regulator. The larger the value of P, the stronger the adjustment intensity. The value 100 indicates that when the difference between the PID feedback value and given value is 100%, the range within which the PID regulator can regulate the output frequency command is the max. frequency (ignoring integral function and differential function).

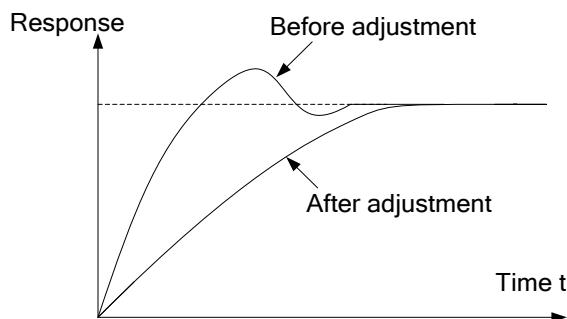
Integral time (Ti)

The integral adjuster can be used to eliminate static difference. Too large regulation may lead to system oscillation. The integral time parameter is generally regulated gradually from large to small until the stabilized system speed fulfills the requirement.

Function code	Name	Description
P09.05, P09.09	Integral time (Ti)	Used to determine the speed of the integral adjustment on the deviation of PID feedback and reference from the PID regulator. When the deviation between PID feedback and reference is 100%, the integral regulator works continuously during the time to achieve the max. output frequency (P00.03) or the max. voltage (P04.17). Shorter integral time indicates stronger adjustment.

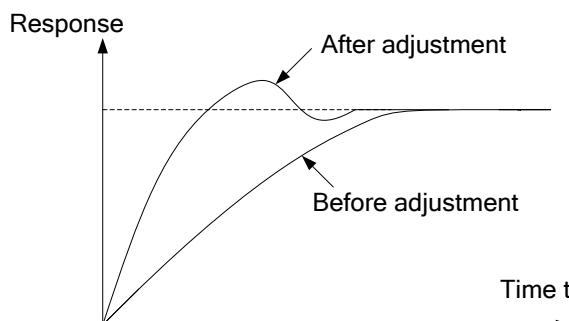
Differential time (Td)

Differential control is used to control the feedback signal variation based on the change trend. Exercise caution before using the differential regulator since it may enlarge the system interferences, especially those with high change frequency.

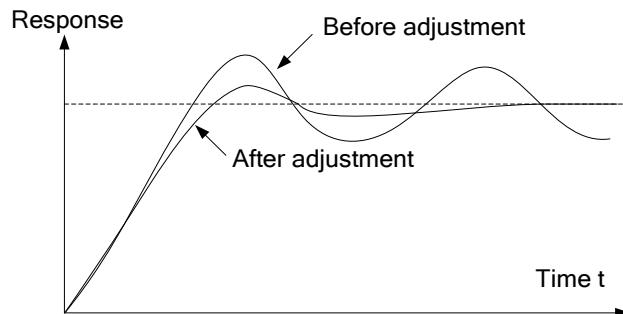

Function code	Name	Description
P09.06, P09.10	Differential time (Td)	Used to determine the strength of the change ratio adjustment on the deviation of PID feedback and reference from the PID regulator. If the feedback changes 100% during the time, the adjustment of the differential regulator is the max. output frequency (P00.03) or the max. voltage (P04.17). Longer differential time indicates stronger adjustment.

- How to fine-tune PID

After setting the parameters controlled by PID, you can adjust these parameters by the following means.


Control overshoot

When overshoot occurs, shorten the derivative time (Td) and prolong integral time (Ti).


Stabilize the feedback value as fast as possible

When overshoot occurs, shorten integral time (Ti) and prolong derivative time (Td) to stabilize control as fast as possible.

Control long-term oscillation

If the cycle of periodic oscillation is longer than the set value of integral time (Ti), it indicates the integral action is too strong, prolong the integral time (Ti) to control oscillation.

6.4.2.7. Frequency set through communication

You can set P00.06 or P00.07 to 10, 12, or 14 (Setting frequency through communication). For details, see chapter 7 Communication.

6.4.3. Frequency fine-tuning

The inverter supports frequency fine-tuning based on the set frequency. In some special scenarios, the set frequency can be set to 0, and the frequency fine-tuning function can be used for frequency setting during the whole process.

Step 1 Select any one of multifunction digital input terminals DI1–DI8, and HDI1 as an external input terminal.

Step 2 Set P05.01–P05.08 and P05.11 to 10 or 11.

Function code	Name	Default	Setting range	Description
P05.01–P05.08	DI1–DI8 terminal function selection	1	0–95	10: Increase frequency setting (UP) 11: Decrease frequency setting (DOWN)
		4		
		7		
		0		
		0		
		0		
		0		
		0		
		0		
P05.11	Function of HDI1	0		
P08.46	UP/DOWN terminal control setting	0x000	0x000–0x221	Ones place: Frequency setting selection 0: The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid.
				Tens place: Frequency control selection

Function code	Name	Default	Setting range	Description
				0: Valid only when P00.06=0 or P00.07=0 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority Hundreds place: Action selection for stop 0: Setting is valid. 1: Valid during running, cleared after stop 2: Valid during running, cleared after a stop command is received
P08.47	Frequency integral rate of the UP terminal	0.50Hz/s	0.01–50.00	-
P08.48	Frequency integral rate of the DOWN terminal	0.50Hz/s	0.01–50.00	-

6.5. Speed control mode selection

The inverter supports three speed control modes. You can set P00.00 to select a speed control mode based on actual conditions. Before using a vector control mode (0 or 1), set the motor nameplate parameters and perform motor parameter autotuning first. For details, see sections 6.1.2 Rated motor parameter setting and 6.2.1 Motor parameter autotuning.

Function code	Name	Default	Setting range	Description
P00.00	Speed control mode	2	0–2	0: SVC mode 0 1: SVC mode 1 2: V/F mode

SVC mode 0: P00.00=0

Encoders are not required for this mode. It is suitable for applications requiring low-frequency operation, high torque, and precise speed control. This mode provides accurate control of speed and torque. Compared to SVC Mode 1, it is more appropriate for medium- and small-power applications. For detailed settings, refer to Group P03 — Vector Control of Motor 1 and Group P35 — Vector Control of Motor 2.

 Note: Synchronous motors in this mode are suitable for large-power, low-frequency operation rather than ultra-high-speed operation.

SVC mode 1: P00.00=1

Encoders are not required for this mode. It is applicable to scenarios requiring high-speed control accuracy and can be applied across all power ranges. This mode provides precise control of both speed and torque. For detailed settings, refer to Group P03 — Vector Control of Motor 1 and Group P35 — Vector Control of Motor 2.

V/F mode: P00.00=2

Encoders are not required for this mode. It provides improved control accuracy with the advantages of stable operation, low-frequency torque boost, current vibration suppression, and additional functions including slip compensation and voltage adjustment. For detailed settings, refer to Group P04 — V/F Control of Motor 1 and Group P36 — V/F Control of Motor 2.

6.6. Torque setting method selection

The inverter supports both torque control and speed control.

- Speed Control: Stabilizes the motor speed to match the set speed. The maximum load capacity is restricted by the torque limit.
- Torque Control: Stabilizes the output torque to match the set torque. The output frequency is limited by the configured upper and lower frequency limits.

The following example illustrates torque mode configuration for Motor 1. Torque mode configuration for Motor 2 is similar. For details, refer to Group P03 — Vector Control of Motor 1 and Group P35 — Vector Control of Motor 2.

6.6.1. Torque setting method selection

Set P03.11 to select a torque setting method. Torque is defined as a relative value, where 100% corresponds to the motor rated current. The setting range is -300.0% to 300.0%.

- After issuing a start command, the inverter runs in the forward direction when the torque reference value is positive.
- The inverter runs in the reverse direction when the torque reference value is negative.

Function code	Name	Default	Setting range	Description
P03.11	Torque setting method selection of motor 1	0	0-15	0: P03.12 1: AI1 2: AI2 3: AI3 5: High-speed pulse HDI1 8: Multi-step speed running 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved

Function code	Name	Default	Setting range	Description
P03.12	Torque set through keypad of motor 1	20.0%	-300.0%–300.0%	Torque setting is a relative value. Note: 100% corresponds to the motor rated current.
P03.13	Torque reference filter time of motor 1	0.010s	0.000–10.000s	-

6.6.2. Method for switching between speed control and torque control

The inverter supports three methods for switching between speed control and torque control.

Method 1: Direct Control Switching

Set P03.32 to:

- 0 → Speed control
- 1 → Torque control

Method 2: Switching via Multifunction Digital Input Terminal

Procedure:

1. Select any one of the multifunction digital input terminals DI1–DI8 or HDI1 as an external input terminal.
2. Set P05.01–P05.08 and P05.11 to 29.

When function 29 is valid:

- Set P03.32 = 0 → Torque control
- Set P03.32 = 1 → Speed control

Method 3: Switching via Communication

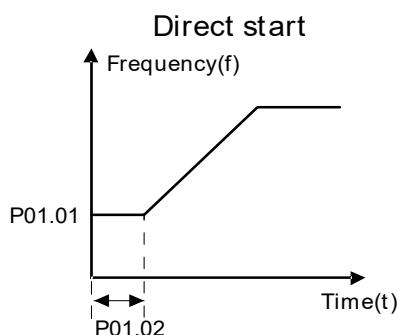
1. Write bit 2 of the inverter special control command word (address 2009H) to 1 through the RS485 master station.
2. When communication-based switching is active:
 - If P03.32 = 0, torque control is selected.
 - If P03.32 = 1, speed control is selected.

Note: When using a terminal for switching between speed and torque control, the control enabling selection is opposite to the setting in P03.32.

Function code	Name	Default	Setting range	Description
P03.32	Enabling torque control of motor 1	0	0–1	0: Disable 1: Enable
P05.01–P05.08	DI1–DI8	1	0–95	29: Switch between speed control and torque control
		4		

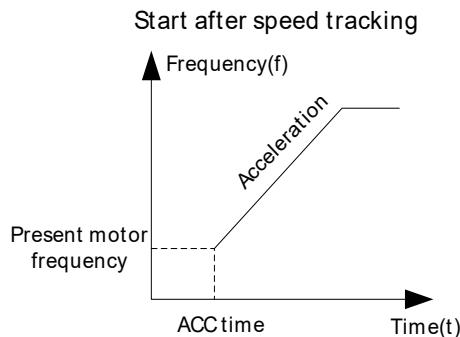
Function code	Name	Default	Setting range	Description
	Terminal function selection	7		
		0		
		0		
		0		
		0		
		0		
		0		
P05.11	Function of HDI1	0		

6.7. Start/stop settings


6.7.1. Start settings

For a specific motor type and application scenario, the start mode can be selected by setting P01.00.

Function code	Name	Default	Setting range	Description
P01.00	Running mode of start	0	0-4	0: Direct start 1: Start after DC braking 4: Start after speed tracking (software) Others: Reserved


Direct start: P01.00=0

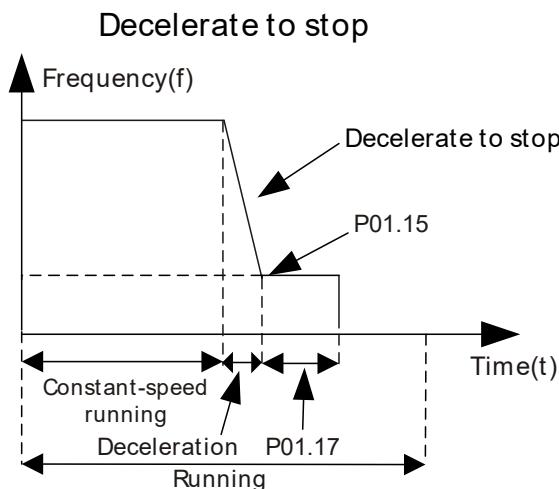
- The inverter starts at the starting frequency defined in P01.01 if the braking time before start is 0.
- This mode is generally applicable for starting from a standstill. See the following figure.

Start after speed tracking: P01.00=4

- The inverter detects the current running frequency and direction of the motor and smoothly accelerates from the detected frequency to the set frequency, minimizing mechanical and electrical impact.
- This mode is suitable for applications where the motor is already running at high speed or in scenarios with transient voltage fluctuations in the grid.

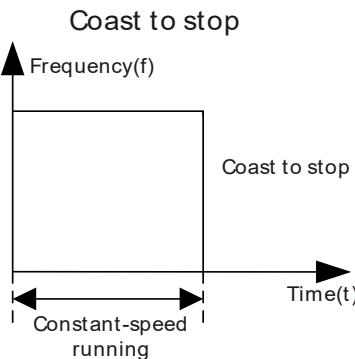
Function code	Name	Default	Setting range	Description
P01.01	Starting frequency of direct start	0.50Hz	0.00Hz–P00.03	Sets the initial frequency during inverter start. See P01.02 for details on the starting frequency hold time.
P01.02	Starting frequency hold time	0.0s	0.0–50.0s	Determines the duration for which the inverter output frequency remains at the starting frequency. After this period, the inverter ramps to the set frequency. If the set frequency is lower than the starting frequency, the inverter enters standby mode. Proper configuration increases starting torque.
				<p>Output frequency f</p> <p>fmax</p> <p>f1</p> <p>Time t</p> <p>f1 is specified by P01.01</p> <p>t1 is specified by P01.02</p>
P01.03	Braking current before start	0.0%	0.0–100.0%	Defines the DC braking current applied before starting. DC braking is applied for the duration set in P01.04. Stronger currents produce higher braking torque. The value is expressed as a percentage of the inverter's rated output current.
P01.04	Braking time before start	0.00s	0.00–50.00s	

Function code	Name	Default	Setting range	Description
				Specifies the duration of DC braking before start. If set to 0, DC braking is disabled.
P01.23	Start delay time	0.0s	0.0–600.0s	Defines a delay between receiving the start command and actual inverter startup. Useful for controlled brake release or sequencing multiple motors.


6.7.2. Stop settings

You can select a stop mode by setting P01.08.

Function code	Name	Default	Setting range	Description
P01.08	Stop mode	0	0: Decelerate to stop 1: Coast to stop	-


Decelerate to stop: P01.08=0

After a stop command is issued, the inverter reduces output frequency according to the configured deceleration mode (DEC mode) and deceleration time. Once the output frequency reaches the stop speed set in P01.15, the inverter stops.

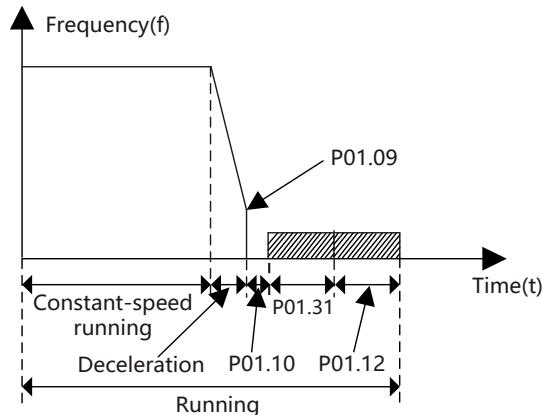
Coast to stop: P01.08=1

After a stop command is issued, the inverter immediately ceases output. The load decelerates to a stop naturally according to its mechanical inertia.

Note: If the set frequency changes from above the frequency lower limit to below the frequency lower limit, the inverter executes the stop action defined by P01.19.

Function code	Name	Default	Setting range	Description
P01.19	Action selected when running frequency less than frequency lower limit	0x00	0x00–0x12	Ones place: Action selection 0: Run at the frequency lower limit 1: Stop 2: Sleep Tens place: Stop mode 0: Coast to stop 1: Decelerate to stop

For applications requiring fast and stable stopping of the motor, DC braking can be applied after the motor reaches a low-speed frequency, as specified by P01.09.

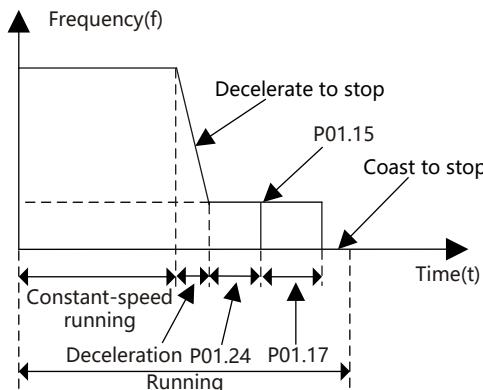

Function code	Name	Default	Setting range	Description
P01.09	Starting frequency of braking for stop	0.00Hz	0.00Hz–P00.03	Specifies the frequency at which DC braking is initiated during deceleration. P00.03 defines the maximum output frequency.

P01.09 = Non-zero value

During deceleration, if the inverter frequency drops below P01.09, the inverter waits for the demagnetization time (P01.10), then checks P01.12:

- If P01.12 > 0, DC braking is applied for the set duration.
- After DC braking, the inverter coasts to stop.
- If P01.12 = 0, DC braking is disabled.

P01.09 = Non-zero value



P01.09 = Zero

The inverter decelerates to stop following the normal deceleration ramp. When the ramp frequency falls below P01.15, stop is determined according to P01.16 and P01.24:

- P01.16 = 0: Coasts to stop.
- P01.16 = 1: Stops according to speed feedback, with delay specified by P01.17 if necessary.

P01.19 = 0

The methods for fast decelerating to stop are as follows:

1. Increase inverter power to improve maximum braking capability.
2. Apply DC braking at low speed using P01.09.
3. Enable magnetic flux braking by setting P08.52 to accelerate deceleration response.
4. Install external braking resistors.
5. Use S-curve deceleration for smoother stop transition.

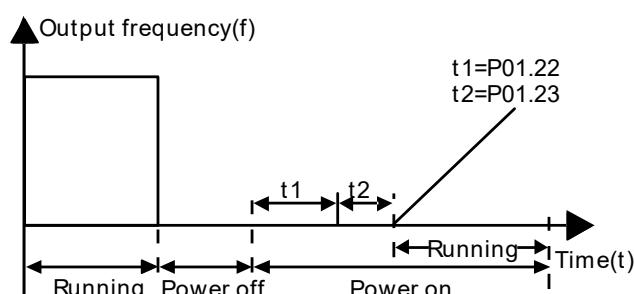
Function code	Name	Default	Setting range	Description
P01.10	Demagnetization time	0.00s	0.00–30.00s	Delay before starting DC braking to prevent overcurrent at high speeds.

Function code	Name	Default	Setting range	Description
P01.11	DC braking current for stop	0.0%	0.0–100.0%	Percentage of inverter rated output current. Higher values increase braking effect.
P01.12	DC braking time for stop	0.00s	0.0–50.0s	Duration of DC braking. Set to 0 to disable DC braking.
P01.15	Stop speed	0.50Hz	0.00Hz–P00.03	-
P01.16	Stop speed detection mode	0	0–1	0: Detect by the set speed (unique in V/F control mode) 1: Detect according to speed feedback
P01.17	Stop speed detection time	0.50s	0.00–100.00s	-
P01.24	Stop speed delay	0.0s	0.0–600.0s	-

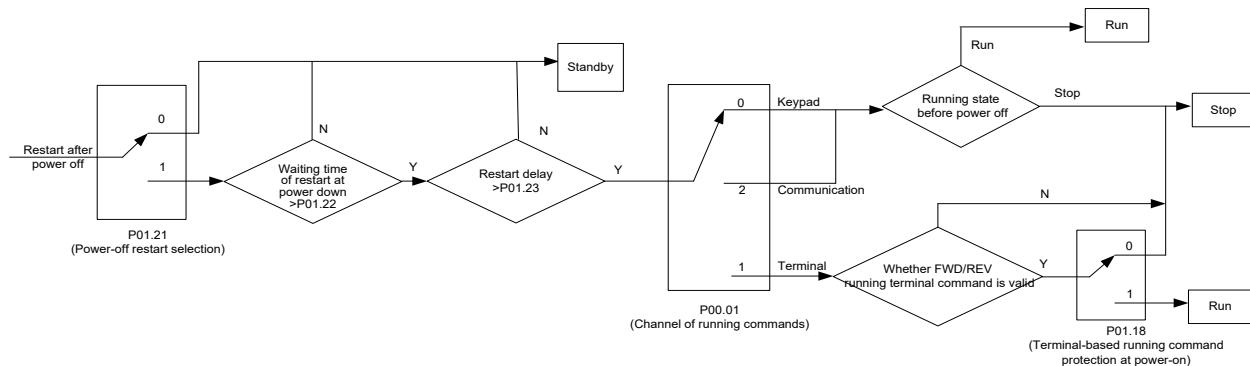
6.7.3. Power-off restart

The inverter supports memory of running status and automatic restart after a power-off event. This function ensures that the inverter resumes operation safely and according to pre-defined conditions.

Function Behavior


- Memory of Running Status

When P01.21 = 1, the inverter memorizes its running state at the moment of power-off.


- If the inverter was running before power-off, it will automatically restart upon the next power-on when all start conditions are met.
- The restart is delayed by a wait time specified in P01.22.

- Terminal Command Channel Requirement

If the running command is provided via terminals, you must also set P01.18 = 1 to enable auto-restart functionality.

The following figure shows the logic diagram for restart after power-off.

Function code	Name	Default	Setting range	Description
P01.21	Power-off restart selection	0	0–1	0: Disable 1: Enable
P01.22	Wait time for power-on restart	1.0s	0.0–3600.0s	Wait time before automatic restart after power-on (effective only if P01.21 = 1).
P01.23	Start delay time	0.0s	0.0–600.0s	Delay from standby to running state after a start command, enabling controlled brake release.
P01.18	Terminal-based running command protection at power-on	0	0–1	0: Invalid at power-on 1: Valid at power-on Note: Exercise caution before using this function. Otherwise, serious consequences may result.

The behavior of terminal-based running commands at power-on is determined by the function code P01.18. This setting ensures safe operation of the inverter during power restoration.

Function Behavior

- Terminal-Based Running Command Invalid at Power-On (P01.18 = 0)
 - During power-on, even if the running command terminal is in a valid state, the inverter does not start.
 - The inverter remains in a protection state until the terminal is first disabled and then re-enabled.
- Terminal-Based Running Command Valid at Power-On (P01.18 = 1)
 - During power-on, if the running command terminal is valid, the inverter starts automatically after initialization.
 - This allows seamless restart of the motor when power is restored, reducing manual intervention.

Notes

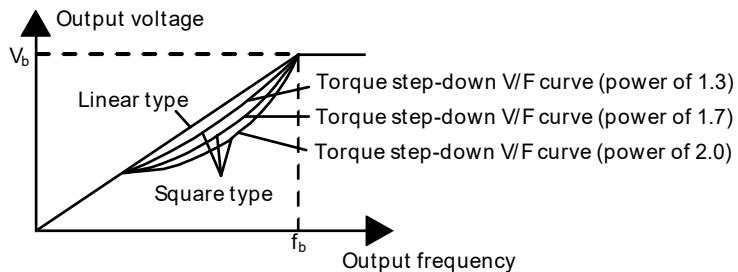
- Proper configuration of P01.18 is crucial for safety.
- Incorrect settings may cause unintended motor startup or delay motor operation.

6.8. Control performance regulation

6.8.1. V/F control performance optimization

The following uses V/F control performance optimization for motor 1 as an example. For details about related function codes, see Group P04—V/F control of motor 1. For the commissioning of V/F control performance optimization for motor 2, refer to that is for motor 1. For details about related function codes, see Group P36—V/F control of motor 2.

6.8.1.1. V/F curve setting


The inverter provides multiple V/F curve modes to accommodate different load characteristics. You can either select a predefined V/F curve or customize it according to the specific application.

Constant Torque Loads:

Loads such as conveyor belts require a constant torque throughout operation. It is recommended to adopt the straight-line V/F curve.

Variable Torque Loads:

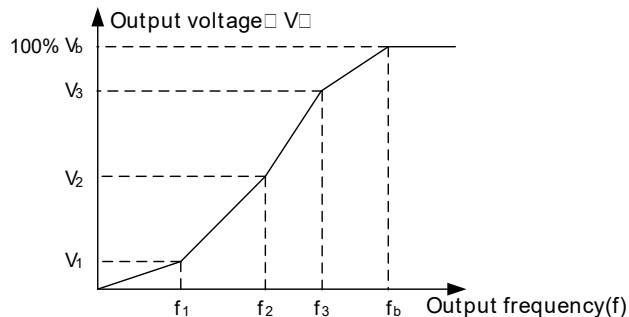
Loads such as fans and water pumps exhibit a torque-speed relationship proportional to the square or cube of speed. For such applications, it is recommended to adopt a torque-down V/F curve with a power of 1.3, 1.7, or 2.0.

Note: In the figure, V_b indicates the motor rated voltage and f_b indicates the motor rated frequency.

Function code	Name	Default	Setting range	Description
P04.00	V/F curve setting of motor 1	0	0–5	0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F (V/F separation); in this mode, V can be separated from F and F can be adjusted through the frequency setting channel set by P00.06 or the voltage setting channel set by

Function code	Name	Default	Setting range	Description
				P04.13 to change the characteristics of the curve.

The inverter also supports **multi-point V/F curves**. This allows adjustment of three intermediate points while keeping the start point at **(0 Hz, 0 V)** and the end point at **(motor fundamental frequency, rated voltage)**.


- **Setting Rules:**

- Frequencies: $0 \leq f_1 \leq f_2 \leq f_3 \leq$ Motor rated frequency
- Voltages: $0 \leq V_1 \leq V_2 \leq V_3 \leq$ Motor rated voltage

Warning: Excessive voltage at low frequency may cause:

- Motor overheating or damage
- Inverter overcurrent trips or protection

When **P04.00 = 1** (multi-point V/F curve), use **P04.03–P04.08** to configure the curve points.

Function code	Name	Default	Setting range	Description
P04.03	V/F frequency point 1 of motor 1	0.00Hz	0.00Hz–P04.05	-
P04.04	V/F voltage point 1 of motor 1	0.0%	0.0%–110.0%	100% corresponds to the motor 1 rated voltage.
P04.05	V/F frequency point 2 of motor 1	0.00Hz	P04.03–P04.07	-
P04.06	V/F voltage point 2 of motor 1	0.0%	0.0%–110.0%	100% corresponds to the motor 1 rated voltage.
P04.07	V/F frequency point 3 of motor 1	0.00Hz	P04.05–P02.02 (Hz, P02.00=0)	-

Function code	Name	Default	Setting range	Description
			Rated frequency of AM 1) or P04.05–P02.16 (Hz, P02.00=1 Rated frequency of SM 1)	
P04.08	V/F voltage point 3 of motor 1	0.0%	0.0%–110.0%	100% corresponds to the motor 1 rated voltage.

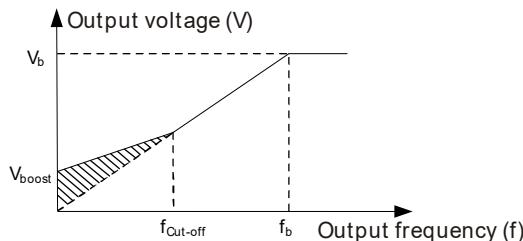
6.8.1.2. Torque boost

Torque boost provides additional voltage to improve low-speed torque performance in V/F control.

Cut-off Frequency:

The cut-off frequency of manual torque boost is expressed as a percentage of the rated motor frequency fb. Below this frequency, torque boost is active; above it, torque boost is disabled.

Load Consideration:


Torque boost should be selected based on the load characteristics. While torque boost improves low-frequency torque, excessive boost may lead to:

- Motor over-excitation
- Increased output current
- Motor overheating
- Reduced system efficiency

Automatic vs. Manual Torque Boost:

The default torque boost is 0.0%, indicating automatic torque boost, where the inverter regulates torque boost based on the actual load. Manual torque boost can be set within a range of 0.1%–10.0%.

Set P04.01 to determine the torque boost of motor 1. Set P04.02 to determine the torque boost cut-off frequency of motor 1. Below this frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost. See the following figure.

Function code	Name	Default	Setting range	Description
P04.01	Torque boost of motor 1	0.0%	0.0%–10.0%	0.0% (automatic torque boost); 0.1%–10.0% (manual torque boost) Note: V_b indicates the max. output voltage.
P04.02	Torque boost cut-off of motor 1	20.0%	0.0%–50.0%	The cut-off frequency of manual torque boost is a percentage of the rated motor frequency f_b . Torque boost can improve the low-frequency torque characteristics in the V/F control.

6.8.1.3. V/F slip compensation gain

V/F control is an open-loop method; sudden load changes can cause motor speed fluctuations. **Slip compensation gain** allows the inverter to adjust output to compensate for speed changes caused by load variation, improving mechanical rigidity.

- **Motor Rated Slip Frequency Formula:**

$$\Delta f = f_b - \frac{n \cdot p}{60}$$

Where:

- f_b — Rated frequency of motor 1 (**P02.02**)
- n — Rated rotation speed of motor 1 (**P02.03**)
- p — Number of motor pole pairs
- **Gain**

Setting:

100% corresponds to the rated slip frequency Δf of motor 1. You can adjust P04.09 between **0.0–200.0%** to optimize the compensation effect.

Function code	Name	Default	Setting range	Description
P04.09	V/F slip compensation gain of motor 1	100.0%	0.0–200.0%	100% corresponds to the rated slip frequency Δf of motor 1. Adjust to improve speed stability under varying loads.

6.8.1.4. Oscillation control

In large-power driving scenarios, using the V/F control mode will cause motor oscillation, which can be eliminated by setting P04.10 and P04.11, while the oscillation control threshold of motor 1 is specified by P04.12.

Function code	Name	Default	Setting range	Description
P04.10	Low-frequency oscillation control factor of motor 1	10	0–100	Setting a greater value indicates better control effect. However, if the value is too large, the inverter output current may be too large.
P04.11	High-frequency oscillation control factor of motor 1	10	0–100	
P04.12	Oscillation control threshold of motor 1	30.00Hz	0.00Hz–P00.03	

6.8.1.5. V/F flux weakening performance optimization

When the AM needs to run with flux weakened, set P04.19 in the V/F control mode to increase the output voltage and maximize the bus voltage utilization, improving the motor acceleration performance.

Function code	Name	Default	Setting range	Description
P04.19	V/F constant power zone weakening coefficient of motor 1	1.00	1.00–1.30	-

6.8.1.6. AM IF control

Generally, the IF control mode is valid for AMs. It can be used for SMs only when the frequency is extremely low. IF control is implemented by performing closed-loop control on the total output current of the inverter. The output voltage adapts to the current reference, and open-loop control is separately performed over the frequency of the voltage and current. Take AM 1 for example. Set P04.26 to 1 to enable the IF mode for AM 1. You can set related parameters when the IF mode is enabled.

Function code	Name	Default	Setting range	Description
P04.26	Enabling IF mode for AM 1	0	0–1	0: Invalid 1: Enable
P04.27	Current setting in IF mode for AM 1	120.0%	0.0–200.0	When IF control is adopted for AM 1, the function code is used to set the output current. The value is a percentage of the motor rated current.
P04.28	Proportional coefficient in IF mode for AM 1	350	0–5000	When IF control is adopted for AM 1, the function code is used to set the proportional coefficient of the output current closed-loop control.
P04.29	Integral coefficient in IF mode for AM 1	150	0–5000	When IF control is adopted for AM 1, the function code is used to set the integral coefficient of the output current closed-loop control.
P04.30	Frequency threshold for switching off IF mode for motor 1	10.00Hz	0.00Hz–P04.31	-
P04.31	End frequency point for switching off IF mode for motor 1	25.00Hz	P04.30–P00.03	-

6.8.1.7. Energy-saving run for AM V/F

During AM actual running, the inverter can search for the max. efficiency point so as for the AM to keep running in the most efficient state to save energy. This function is generally used in light load or no-load cases. Set P04.32 to specify whether to act in energy-saving run.

Function code	Name	Default	Setting range	Description
P04.32	V/F control energy-saving mode selection for AM 1	0	0–3	0: Disable (Energy saving is invalid) 1: Max. efficiency 2: Optimal power factor 3: Max. ratio of torque to current In light-load state, the motor can adjust the output voltage automatically to achieve energy saving. This function

Function code	Name	Default	Setting range	Description
				is not applicable to the cases where sudden load changes often occur.
P04.33	V/F control energy-saving optimization coefficient for AM 1	100.0%	25.0–400.0%	-

6.8.1.8. Reactive current regulation in SM V/F control

When the SM V/F control mode is enabled, you can set P04.22 to specify the frequency threshold for the switching between pull-in current 1 and pull-in current 2. When the output frequency is less than P04.22, the motor reactive current is specified by P04.20; when the output frequency is greater than P04.22, the motor reactive current is specified by P04.21.

Function code	Name	Default	Setting range	Description
P04.20	Pull-in current 1 in V/F control of SM 1	30.0%	-100.0%–100.0%	100% corresponds to the motor rated current.
P04.21	Pull-in current 2 in V/F control of SM 1	10.0%	-100.0%–100.0%	100% corresponds to the motor rated current.
P04.22	V/F control pull-in current frequency switching point for SM 1	20.0%	0.0%–200.0%	100% corresponds to the motor rated frequency.
P04.23	V/F control reactive current closed-loop proportional coefficient for SM 1	50	0–500	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control.
P04.24	V/F control reactive current closed-loop integral time for SM 1	30	0–300	When the SM VF control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control.
P04.25	V/F control reactive closed-loop output limit for SM 1	8000	0–16000	-

6.8.2. Vector control performance optimization

The following uses vector control performance optimization for motor 1 as an example. For details about related function codes, see Group P03—Vector control of motor 1. The V/F control performance optimization for motor 2 is similar to that for motor 1. For details about related function codes, see Group P35—Vector control of motor 2.

6.8.2.1. Torque upper limit

Speed control and torque control in the vector control mode are restricted by torque upper limits. When you set P03.18 (Setting source of electromotive torque upper limit) to keypad, the torque upper limit is specified by P03.20. When you set P03.19 (Setting source of braking torque upper limit) to keypad, the torque upper limit is specified by P03.21.

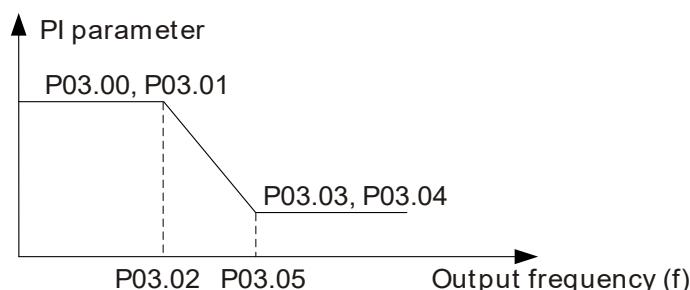
Function code	Name	Default	Setting range	Description
P03.18	Setting source of electromotive torque upper limit for motor 1	0	0–15	0: Set by P03.20 (selected by P03.18) 0: Set by P03.21 (selected by P03.19) 1: AI1 2: AI2 3: AI3 5: High-speed pulse HDI1 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved
P03.19	Setting source of braking torque upper limit for motor 1	0	0–15	Note: 100% corresponds to the motor rated current.
P03.20	Electromotive torque upper limit set through keypad for motor 1	180.0%	0.0–300.0%	Used to set relative values of torque limits.
P03.21	Braking torque upper limit set through keypad for motor 1	180.0%	0.0–300.0%	The value is relative to the motor rated current.

6.8.2.2. Frequency upper limit settings in torque control

In torque control, the inverter outputs torque according to the set torque command. When the set torque is greater than the load torque, the inverter output frequency increases to the frequency upper limit; when the set torque is less than the load torque, the inverter output frequency decreases to the frequency lower limit; when the inverter output frequency is restricted, the output torque will no longer be the same as the set torque. When you set P03.14 to set the setting source of forward rotation upper-limit frequency in torque control, the torque limit is specified by P03.16. When you set P03.15 to set the setting source of reverse rotation upper-limit frequency in torque control, the torque limit is specified by P03.17.

Function code	Name	Default	Setting range	Description
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	0	0–15	0: Set by P03.16 (selected by P03.14) 0: Set by P03.17 (selected by P03.15) 1: AI1 2: AI2 3: AI3 5: High-speed pulse HDI1 8: Multi-step speed running 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	0	0–15	
P03.16	Forward rotation upper-limit frequency in torque control for motor 1	50.00Hz (Max. output frequency)	0.00Hz–P00.03	Used to specify the frequency upper limits in torque control. 100% corresponds to the max. frequency.
P03.17	Reverse rotation upper-limit frequency in torque control for motor 1			P03.16 specifies the value when P03.14=1; while P03.17 specifies the value when P03.15=1.

6.8.2.3. Speed loop


The speed loop dynamic response characteristics in vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator.

The dynamic response of speed regulator can be accelerated by increasing the proportional gain or decreasing the integral time. However, too quick dynamic response of speed regulator can cause oscillations.

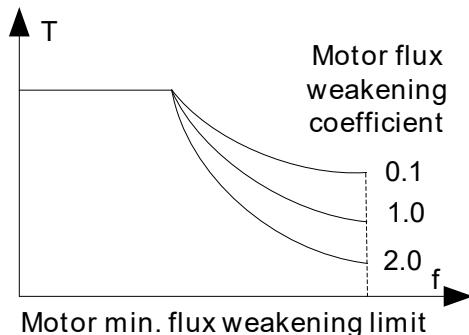
Recommended adjustment method: If the default settings cannot meet the requirements, adjust the settings slightly. First, increase the proportional gain to ensure that the system does not oscillate; and then reduce the integration time, so that the system responds fast with small overshoots.

Improper PI parameter settings will cause large speed overshoot.

The switchover between the low-point frequency for switching and the high-point frequency for switching indicates the linear switchover between two groups of PI parameters. See the following figure.

Function code	Name	Default	Setting range	Description
P03.00	Speed-loop proportional gain 1 of motor 1	20.0	0.0–200.0	Speed regulator PI parameters are divided into the low-speed group and high-speed group. When the running frequency is less than P03.02, the speed regulator PI parameters are P03.00 and P03.01. When the running frequency is greater than P03.05 (High-point frequency for switching), the speed regulator PI parameters are P03.03 and P03.04.
P03.01	Speed-loop integral time 1 of motor 1	0.200s	0.000–10.000s	
P03.02	Motor 1 switching low-point frequency	5.00Hz	0.00Hz–P03.05	
P03.03	Speed-loop proportional gain 2 of motor 1	20.0	0.0–200.0	-
P03.04	Speed-loop integral time 2 of motor 1	0.200s	0.000–10.000s	
P03.05	Switching high-point frequency of motor 1	10.00Hz	P03.02–P00.03	
P03.06	Speed-loop output filter of motor 1	0	0–8	0–8 (corresponding to 0–2°/10ms)
P03.36	Speed-loop differential gain of motor 1	0.00s	0.00–10.00s	-

6.8.2.4. Current loop


Generally, there is no need to adjust it. If the current waveform is not sinusoidal, the current loop band width can be reduced.

Function code	Name	Default	Setting range	Description
P03.54	Current-loop band width of motor 1	400	0–2000	-

6.8.2.5. Vector control flux weakening performance optimization

When running at a speed higher than the rated speed, the AM enters the flux weakening state. You can set P03.22 to change the flux-weakening curvature. A great flux-weakening control coefficient indicates a steep curve. The weakening coefficient in constant power zone is used in AM flux-weakening control, while the flux-weakening proportional gain and flux-weakening integral gain are specified by P03.26 and P03.33. The max. inverter output voltage is specified by P03.24.

If pre-exciting is performed for the motor when the inverter starts up, a magnetic field is built up inside the motor to improve the torque performance during the start process. The pre-exciting time is specified by P03.25.

Function code	Name	Default	Setting range	Description
P03.22	Weakening coefficient in constant power zone for motor 1	100.0%	0.0–200.0%	A field weakening curve is selected through the field weakening coefficient.
P03.23	Lowest weakening point in constant power zone for motor 1	5%	5%–100.0%	The lowest weakening point in constant power zone is specified by P03.23.
P03.24	Max. voltage limit on motor 1	100.0%	0.0–120.0%	Used to set the max. inverter output voltage, which is a percentage of the motor rated voltage. Set the value

Function code	Name	Default	Setting range	Description
				according to onsite conditions.
P03.25	Pre-exciting time of motor 1	0.300s	0.000–10.000s	<p>Pre-exciting is performed for the motor when the inverter starts up. A magnetic field is built up inside the motor to improve the torque performance during the start process.</p> <p>Note: Pre-excitation can improve the start-up capability of AM with loads. For an AM, set 0 to disable the pre-excitation process. For an SM, if P13.01 is set to an enabling option, the pre-excitation process is directly skipped.</p>
P03.26	Flux-weakening proportional gain of motor 1	1000	0–8000	-
P03.33	Flux-weakening integral gain of motor 1	100.0%	0.0–300.0%	-

6.8.2.6. SM start control optimization

In the open-loop control mode, you can select a start control method by setting P13.01.

Function code	Name	Default	Setting range	Description
P13.01	Initial pole detection method	2	0–2	<p>0: Do not detect 1: High-frequency superposition 2: Pulse superposition</p>

No detection: P13.01=0

The inverter startup command given is a direct startup command. In this mode, set P13.02 to a great value to increase the starting torque, which causes a start reversal phenomenon with an average load carrying capacity.

High-frequency current injection: P13.01=1

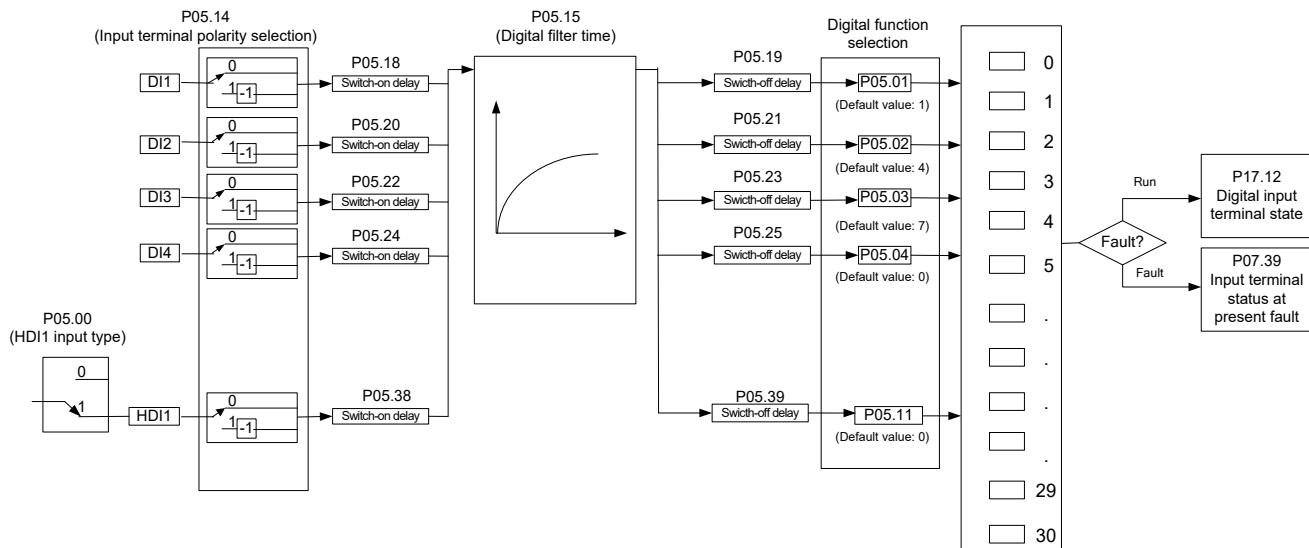
If a inverter startup command is given, the inverter autotunes the initial pole angle by means of high-frequency current injection and then automatically starts up after the autotuning. When

P13.02 is valid and the initial pole angle based direction setting is accurate, the reverse rotation problem can be weakened or eliminated, but also the load carrying capacity can be improved.

Pulse superimposition: P13.01=2

This method is similar to that when P13.01=1. The difference is that the initial pole angle autotuning method is different. This method has higher identification accuracy with shorter time but sharper noise, but you can adjust the pulse current value by setting P13.06.

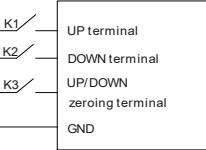
Function code	Name	Default	Setting range	Description
P13.02	Pull-in current 1	30.0%	-100.0%–100.0%	Pull-in current is the pole position orientation current; pull-in current 1 is valid within the lower limit of pull-in current switch-over frequency threshold. If you need to increase the start torque, increase the value of this function parameter properly. 100% corresponds to the motor rated current.
P13.03	Pull-in current 2	0.0%	-100.0%–100.0%	Specifies the pole position orientation current. It is valid within the upper limit of pull-in current switching frequency threshold. You do not need to change the value in most cases. 100% corresponds to the motor rated current.
P13.04	Pull-in current switching frequency	20.0%	0.0–200.0%	100% corresponds to the motor rated frequency.
P13.06	Pulse current setting	80.0%	0.0–300.0%	Used to set the pulse current threshold when the initial magnetic pole position is detected in the pulse mode. 100% corresponds to the motor rated current.


6.9. Input and output

6.9.1. Digital input and output

6.9.1.1. Digital input

The inverter carries four programmable digital input terminals and one HDI input terminal. The functions of all the digital input terminals can be programmed through function codes. The HDI input terminal can be set to act as a high-speed pulse input terminal or common digital input


terminal by setting P05.00; if it is set to act as a high-speed pulse input terminal, you can also set HDI1 high-speed pulse input to serve as the frequency reference input.

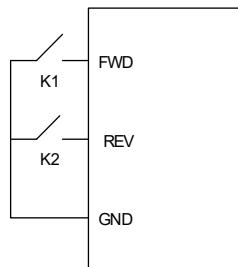
Note: Two different multifunction input terminals cannot be configured with the same function.

P05.01–P05.08, and P05.11 are used to set the functions of multifunction digital input terminals. Terminal functions are set as follows.

Setting	Function	Description
0	No function	The inverter does not act even if there is signal input. Set unused terminals to "no function" to avoid misaction.
1	Run forward (FWD)	External terminals are used to control the forward/reverse running of the inverter.
2	Run reverse (REV)	
3	Three-wire running control (DI _{in})	The terminal is used to determine the three-wire running control of the inverter. See P05.17 for details.
4	Forward jogging	For details about frequency of jogging running and acceleration/deceleration time of jogging running, see the description for P08.08–P08.10.
5	Jog reverse	
6	Coast to stop	The inverter blocks output, and the stop process of motor is uncontrolled by the inverter. This mode is applied in the scenarios with large-inertia loads and without stop time requirements. Its definition is the same as the coasting to stop specified by P01.08, and it is mainly used in remote control.
7	Fault reset	External fault reset function, same as the reset function of the STOP/RST key on the keypad. You can use this function to reset faults remotely.

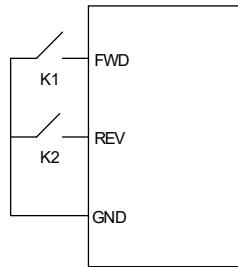
Setting	Function	Description								
8	Pause running	The inverter decelerates to stop, however, all the run parameters are in memory state, such as PLC parameter, wobbling frequency, and PID parameter. After this signal disappears, the inverter will revert to the state before stop.								
9	External fault input	When external fault signal is transmitted to the inverter, the inverter releases fault alarm and stops.								
10	Increase frequency setting (UP)	Used to change the frequency increase/decrease command when the frequency is given by external terminals.								
11	Decrease frequency setting (DOWN)									
12	Clear the frequency increase/decrease setting	<p>The terminal used to clear frequency-increase/decrease setting can clear the frequency value of auxiliary channel set by UP/DOWN, thus restoring the reference frequency to the frequency given by main reference frequency command channel.</p>								
13	Switch between A setting and B setting	The function is used to switch between the frequency setting channels.								
14	Switch between combination setting and A setting	A frequency reference channel and B frequency reference channel can be switched by function 13; the combination channel set by P00.09 and the A frequency reference channel can be switched by function 14; the combination channel set by P00.09 and the B frequency reference channel can be switched by function 15.								
15	Switch between combination setting and B setting									
16	Multi-step speed terminal 1	A total of 16-step speeds can be set by combining digital states of these four terminals.								
17	Multi-step speed terminal 2									
18	Multi-step speed terminal 3									
19	Multi-step speed terminal 4	<p>Note: Multi-step speed 1 is the LSB, and multi-step speed 4 is the MSB.</p> <table border="1" data-bbox="774 1567 1303 1776"> <tr> <th>Multi-step speed 4</th> <th>Multi-step speed 3</th> <th>Multi-step speed 2</th> <th>Multi-step speed 1</th> </tr> <tr> <td>Bit3</td> <td>Bit2</td> <td>Bit1</td> <td>Bit0</td> </tr> </table>	Multi-step speed 4	Multi-step speed 3	Multi-step speed 2	Multi-step speed 1	Bit3	Bit2	Bit1	Bit0
Multi-step speed 4	Multi-step speed 3	Multi-step speed 2	Multi-step speed 1							
Bit3	Bit2	Bit1	Bit0							
20	Pause multi-step speed running	The multi-step speed selection function can be screened to keep the set value in the present state.								
21	Acceleration/Deceleration time selection 1	The status of the two terminals can be combined to select four groups of acceleration/deceleration time.								

Setting	Function	Description			
		Terminal 1	Terminal 2	ACC/DEC	Parameter
22	Acceleration/Deceleration time selection 2	OFF	OFF	acceleration /deceleration time 1	P00.11/P00.12
		ON	OFF	acceleration /deceleration time 2	P08.00/P08.01
		OFF	ON	acceleration /deceleration time 3	P08.02/P08.03
		ON	ON	acceleration /deceleration time 4	P08.04/P08.05
23	Simple PLC stop reset	Used to clear the previous PLC state memory information and restart the simple PLC process.			
24	Pause simple PLC	Used to pause the simple PLC. When the function is revoked, the simple PLC resumes the running.			
25	Pause PID control	PID is ineffective temporarily, and the inverter maintains current frequency output.			
26	Pause wobbling frequency (stop at present frequency)	The inverter pauses at current output. After this function is canceled, it continues wobbling-frequency operation at current frequency.			
27	Reset wobbling frequency (back to center frequency)	The set frequency of inverter reverts to center frequency.			
28	Reset the counter	The counter is cleared.			
29	Switch between speed control and torque control	The inverter switches from torque control mode to speed control mode, or vice versa.			
30	Disable acceleration/deceleration	Used to ensure the inverter is not impacted by external signals (except for stop command) and maintains the present output frequency.			
31	Trigger the counter	Used to enable the counter to count pulses.			

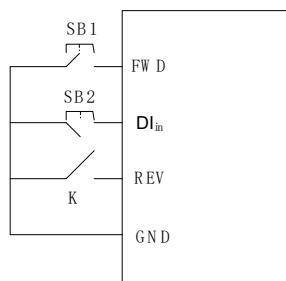

Setting	Function	Description
32	Motor switching terminal	When P08.31 (Motor switchover selection) is set to terminal, if the terminal is invalid, motor 1 is selected; if the terminal is valid, motor 2 is selected.
33	Clear the frequency increase/decrease setting temporarily	When the terminal is closed, the frequency value set by the UP/DOWN key can be cleared and restored to the frequency given by frequency command channel; when the terminal is opened, it is changed to the frequency value after frequency increase/decrease setting.
34	DC braking	The inverter starts DC brake immediately after the command becomes valid.
35	Clear the frequency increase/decrease setting temporarily	When the terminal is closed, the frequency value set by UP/DOWN can be cleared to restore the reference frequency to the frequency given by frequency command channel; when the terminal is opened, it restores to the frequency value after frequency increase/decrease setting.
36	Switch the running command channel to keypad	When the function is enabled, the running command channel is switched to keypad. When the function is disabled, the running command channel is restored to the previous setting.
37	Switch the running command channel to terminal	When the function is enabled, the running command channel is switched to terminal. When the function is disabled, the running command channel is restored to the previous setting.
38	Switch the running command channel to communication	When the function is enabled, the running command channel is switched to communication. When the function is disabled, the running command channel is restored to the previous setting.
39	Pre-exciting command	When the function is enabled, motor pre-exciting is started until the function becomes invalid.
40	Clear power consumption quantity	After this command becomes valid, the power consumption quantity of the inverter will be zeroed out.
41	Keep power consumption quantity	When the function is enabled, the present operation of the inverter does not impact the power consumption quantity.
42	Switch the setting source of braking torque upper limit to keypad	The torque upper limit is set through the keypad when the command is valid.
56	Emergency stop	When the function is enabled, the motor decelerates to stop in emergency manner according to the time specified by P01.26.

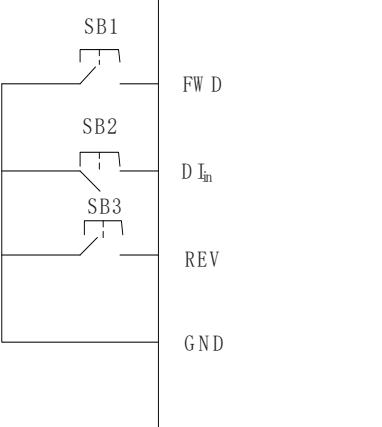
Setting	Function	Description
57	Motor overtemperature fault input	When there is motor overtemperature fault input, the motor stops due to the fault.
61	Switch PID polarities	Used to switch the output polarity of PID. It is used together with P09.03.

Related parameters are listed in the following.


Function code	Name	Default	Setting range	Description
P05.00	HDI input type	0	0–1 0–95	0: HDI1 is high-speed pulse input 1: HDI1 is digital input
P05.01	Function of DI1	1		For details, see the preceding table. DI1–DI4 and HDI1 are the terminals on the control board, while DI5–DI8 are achieved through the virtual terminal functions set by P05.16.
P05.02	Function of DI2	4		
P05.03	Function of DI3	7		
P05.04	Function of DI4	0		
P05.05	Function of DI5	0		
P05.06	Function of DI6	0		
P05.07	Function of DI7	0		
P05.08	Function of DI8	0		
P05.11	Function of HDI1	0		
P05.14	Input terminal polarity	0x000	0x000–0x7FF	Used to set the input terminal polarity. When a bit is 0, the input terminal is positive. When a bit is 1, the input terminal is negative. Note: For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols, see the PZD receiving function code options.
P05.15	Digital input filter time	0.010	0.000–1.000s	Used to specify the sampling filter time of the DI1–DI8, and HDI1 terminals. In strong interference cases, increase the value to avoid maloperation.
P05.16	Virtual terminal setting	0x000	0x000–0x7FF	Bit 0: DI1 Bit 1: DI2 Bit 2: DI3 Bit 3: DI4 Bit 4: DI5

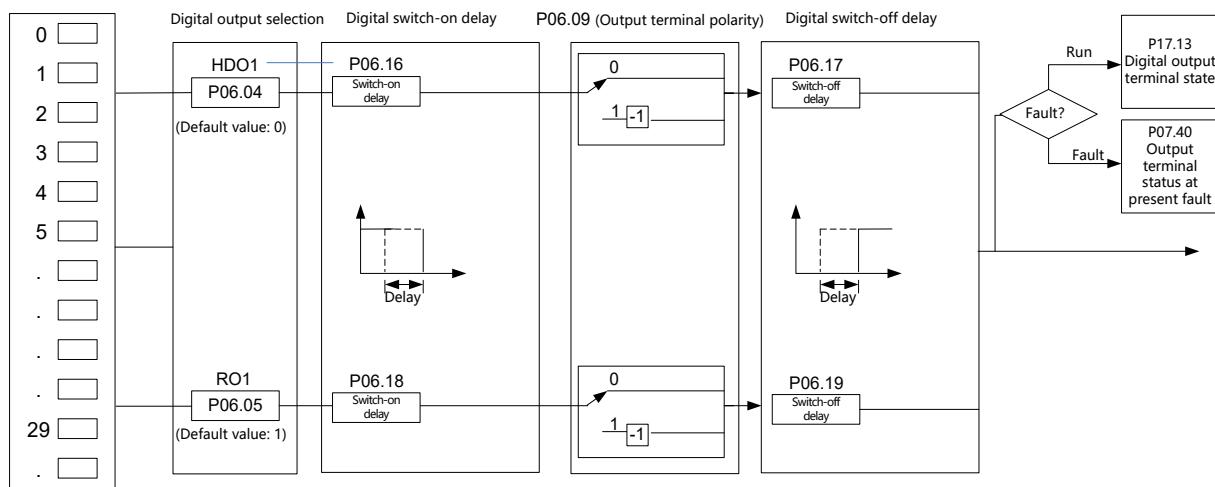
Function code	Name	Default	Setting range	Description
				Bit 5: DI6 Bit 6: DI7 Bit 7: DI8 Bit 8: Reserved Bit 9: Reserved Bit 10: HDI1
P05.17	Terminal control mode	0	0–3	P05.17 specifies the running mode in terminal control.
P05.18	DI1 switch-on delay	0.000s	0–50.000s	0: Two-wire control 1, the enabling consistent with the direction. This mode is widely used. The defined FWD/REV terminal command determines the motor rotation direction.
P05.19	DI1 switch-off delay	0.000s		
P05.20	DI2 switch-on delay	0.000s		
P05.21	DI2 switch-off delay	0.000s		
P05.22	DI3 switch-on delay	0.000s		
P05.23	DI3 switch-off delay	0.000s		
P05.24	DI4 switch-on delay	0.000s		
P05.25	DI4 switch-off delay	0.000s		
P05.26	DI5 switch-on delay	0.000s		
P05.27	DI5 switch-off delay	0.000s		
P05.28	DI6 switch-on delay	0.000s		
P05.29	DI6 switch-off delay	0.000s		
P05.30	DI7 switch-on delay	0.000s		
P05.31	DI7 switch-off delay	0.000s		
P05.32	DI8 switch-on delay	0.000s		


FWD	REV	Running command
OFF	OFF	Stop
ON	OFF	Forward running
OFF	ON	Reverse running
ON	ON	Hold


1: Two-wire control 2, the enabling separated from the direction. In this mode, FWD is the enabling terminal. The direction depends on the defined REV state.

FWD	REV	Running command
OFF	OFF	Stop
ON	OFF	Forward running
OFF	ON	Stop
ON	ON	Reverse running

2: Three-wire control 1. This mode defines DI_{in} as the enabling terminal, and the running command is generated by FWD, while the direction is controlled by REV. During running, the DI_{in} terminal needs to be closed, and when terminal FWD generates a rising edge signal, the inverter starts to run in the direction set by the state of terminal


Function code	Name	Default	Setting range	Description																												
P05.33	DI8 switch-off delay	0.000s		REV; the inverter needs to be stopped by disconnecting terminal DI _{in} .																												
P05.38	HDI1 switch-on delay	0.000s		<p>The direction control is as follows during running:</p>																												
P05.39	HDI1 switch-off delay	0.000s		<table border="1"> <thead> <tr> <th>DI_{in}</th> <th>REV</th> <th>Previous direction</th> <th>Present direction</th> </tr> </thead> <tbody> <tr> <td>ON</td> <td>OFF→ON</td> <td>FWD Run</td> <td>REV Run</td> </tr> <tr> <td></td> <td></td> <td>REV Run</td> <td>FWD Run</td> </tr> <tr> <td>ON</td> <td>ON→OFF</td> <td>REV Run</td> <td>FWD Run</td> </tr> <tr> <td></td> <td></td> <td>FWD Run</td> <td>REV Run</td> </tr> <tr> <td>ON→OFF</td> <td>ON</td> <td></td> <td></td> </tr> <tr> <td></td> <td>OFF</td> <td></td> <td>Decelerate to stop</td> </tr> </tbody> </table> <p>DI_{in}: Three-wire control; FWD: Forward running; REV: Reverse running</p> <p>3: Three-wire control 2. This mode defines DI_{in} as the enabling terminal, and the running command is generated by FWD or REV, but the direction is controlled by both FWD and REV. During running, the DI_{in} terminal needs to be closed, and terminal FWD or REV generates a rising edge signal to control the running and direction of the inverter; the inverter needs to be stopped by disconnecting terminal DI_{in}.</p>	DI _{in}	REV	Previous direction	Present direction	ON	OFF→ON	FWD Run	REV Run			REV Run	FWD Run	ON	ON→OFF	REV Run	FWD Run			FWD Run	REV Run	ON→OFF	ON				OFF		Decelerate to stop
DI _{in}	REV	Previous direction	Present direction																													
ON	OFF→ON	FWD Run	REV Run																													
		REV Run	FWD Run																													
ON	ON→OFF	REV Run	FWD Run																													
		FWD Run	REV Run																													
ON→OFF	ON																															
	OFF		Decelerate to stop																													

Function code	Name	Default	Setting range	Description																					
				<table border="1" data-bbox="889 943 1365 1302"> <thead> <tr> <th>DI_{in}</th> <th>FWD</th> <th>REV</th> <th>Running direction</th> </tr> </thead> <tbody> <tr> <td rowspan="2">ON</td> <td>OFF→ON</td> <td>ON</td> <td>FWD run</td> </tr> <tr> <td></td> <td>OFF</td> <td>FWD run</td> </tr> <tr> <td rowspan="2">ON</td> <td>ON</td> <td rowspan="2">OFF→ON</td> <td>REV run</td> </tr> <tr> <td>OFF</td> <td>REV run</td> </tr> <tr> <td>ON→OFF</td> <td>-</td> <td>-</td> <td>Decelerate to stop</td> </tr> </tbody> </table> <p>DI_{in}: Three-wire control; FWD: Forward running; REV: Reverse running</p> <p>Note: For two-wire controlled running mode, when the FWD/REV terminal is valid, if the inverter stops due to a stop command given by another source, the inverter does not run again after the stop command disappears even if the control terminal FWD/REV is still valid. To make the inverter run, you need to trigger FWD/REV again, for example, PLC single-cycle stop, fixed-length stop, and valid STOP/RST stop during terminal control. (See P07.04.)</p> <p>The function codes P05.18–P05.38 specify the delay time corresponding to the electrical level changes when the</p>	DI _{in}	FWD	REV	Running direction	ON	OFF→ON	ON	FWD run		OFF	FWD run	ON	ON	OFF→ON	REV run	OFF	REV run	ON→OFF	-	-	Decelerate to stop
DI _{in}	FWD	REV	Running direction																						
ON	OFF→ON	ON	FWD run																						
		OFF	FWD run																						
ON	ON	OFF→ON	REV run																						
	OFF		REV run																						
ON→OFF	-	-	Decelerate to stop																						

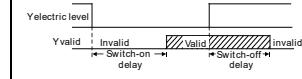
Function code	Name	Default	Setting range	Description
				programmable input terminals switch on or switch off. Si electrical level Si valid Invalid → Switch-on delay → Valid → Switch-off delay → Invalid
P07.39	Input terminal status at present fault	0x0000	0x0000–0xFFFF	Displays the present digital input terminal state of the inverter.
P17.12	Digital input terminal state	0x000	0x000–0x1FF	Displays the present digital output terminal state of the inverter.

6.9.1.2. Digital output

The inverter carries one relay output terminal (RO1) and one high-speed pulse output (HDO1) terminal. All the digital output terminal functions can be specified by function codes.

The following table lists the options of function parameters P06.04–P06.05. A same output terminal function can be repeatedly selected.

Note: To use HDO1 to output any of the following functions, you need to select HDO1 as digital output by setting P06.00 to 1.

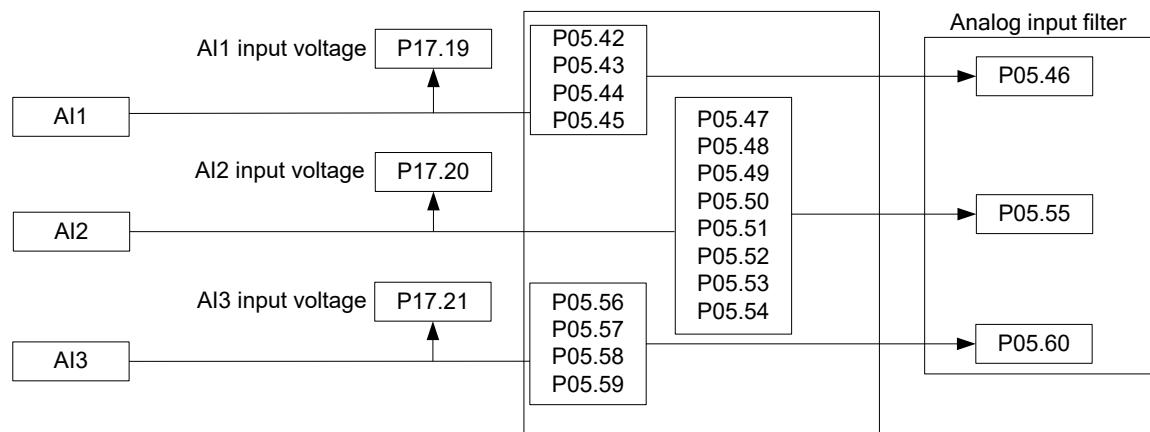

Setting	Function	Description
0	Invalid	The output terminal does not have any function.
1	Running	The ON signal is output when there is frequency output during running.
2	Running forward	The ON signal is output when there is frequency output during forward running.

Setting	Function	Description
3	Running reverse	The ON signal is output when there is frequency output during reverse running.
4	Jogging	The ON signal is output when there is frequency output during jogging.
5	inverter fault	The ON signal is output when an inverter fault occurred.
6	Frequency level detection FDT1	When the output frequency exceeds the FDT level detection value, the ON signal is output. When the output frequency drops below the frequency corresponding to (FDT level detection value - FDT lagging detection value), the OFF signal is output. FDT1 and FDT2 level detection values are specified by P08.32 and P08.34 and lagging detection values are specified by P08.33 and P08.35.
7	Frequency level detection FDT2	When the output frequency falls within the positive and negative tolerance band of the set frequency, the ON signal is output. The positive and negative tolerance band is specified by P08.36.
8	Frequency reached	The ON signal is output when the inverter output frequency and reference frequency are both zero.
9	Running in zero speed	The ON signal is output when the running frequency reaches the upper limit frequency.
10	Upper limit frequency reached	The ON signal is output when the running frequency reaches the lower limit.
11	Lower limit frequency reached	The ON signal is output when main circuit and control circuit powers are established, the protection functions do not act, and the inverter is ready to run.
12	Ready to run	The ON signal is output when the inverter is pre-exciting.
13	Pre-exciting	The ON signal is output after the alarm time elapsed based on the alarm threshold. The overload alarm is configured by function codes P11.08–P11.10.
14	Overload alarm	The ON signal is output after the alarm time elapsed based on the alarm threshold. The underload alarm is configured by function codes P11.11– P11.12.
15	Underload alarm	

Setting	Function	Description
16	Simple PLC stage completed	When the present state of the simple PLC is completed, it outputs a signal.
17	Simple PLC cycle completed	When a single cycle of the simple PLC is completed, it outputs a signal.
18	Set counting value reached	The ON signal is output when the counting value reaches the value specified by P08.25 if the counting function is enabled.
19	Specified counting value reached	The ON signal is output when the counting value reaches the value specified by P08.26 if the counting function is enabled.
20	External fault is valid	The ON signal is output when the fault is an external fault (E17).
21	Specified function code value greater than threshold	When the value of the specified function code exceeds the set function code threshold, the ON signal is output. When the value of the specified function code is less than (Function code threshold - Hysteresis width), the OFF signal is output. The specified function code is set by P06.56 (for example, if it is set to 17.00, the specified function code is P17.00). The function code threshold is set by P06.57, and the hysteresis width is set by P06.58.
22	Running time reached	The ON is output when the single operation time of inverter reaches the time specified by P08.27.
23	Modbus/ Modbus TCP communication virtual terminal output	A signal is output based on the virtual output terminal of Modbus communication (communication address 0x200B). When the value is 1, the ON signal is output; when the value is 0, the OFF signal is output.
25	Ethernet communication virtual terminal output	A signal is output based on the value set through communication. When the value is 1, the ON signal is output; when the value is 0, the OFF signal is output.
26	DC bus voltage established	When the bus voltage is above the inverter undervoltage, the output is valid.
29	STO action	When an STO fault occurs, the output is valid.
34	EtherCAT/PROFINET/EtherNet IP communication virtual terminal output	A signal is output based on the value set through communication. When the value is 1, the ON signal is output; when the value is 0, the OFF signal is output.

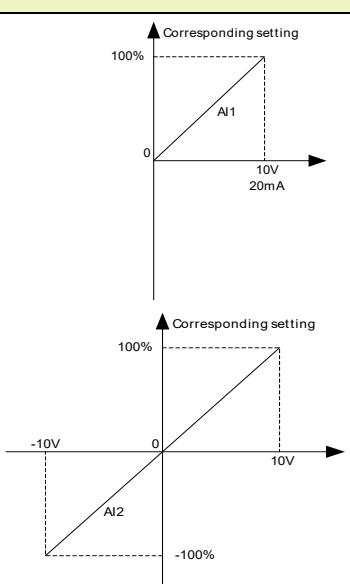
Setting	Function	Description
37	Any frequency reached	The ON signal is output when the ramp reference frequency is greater than the value specified by P08.37 and this situation lasts the time specified by P08.38.

Related parameters are listed in the following.

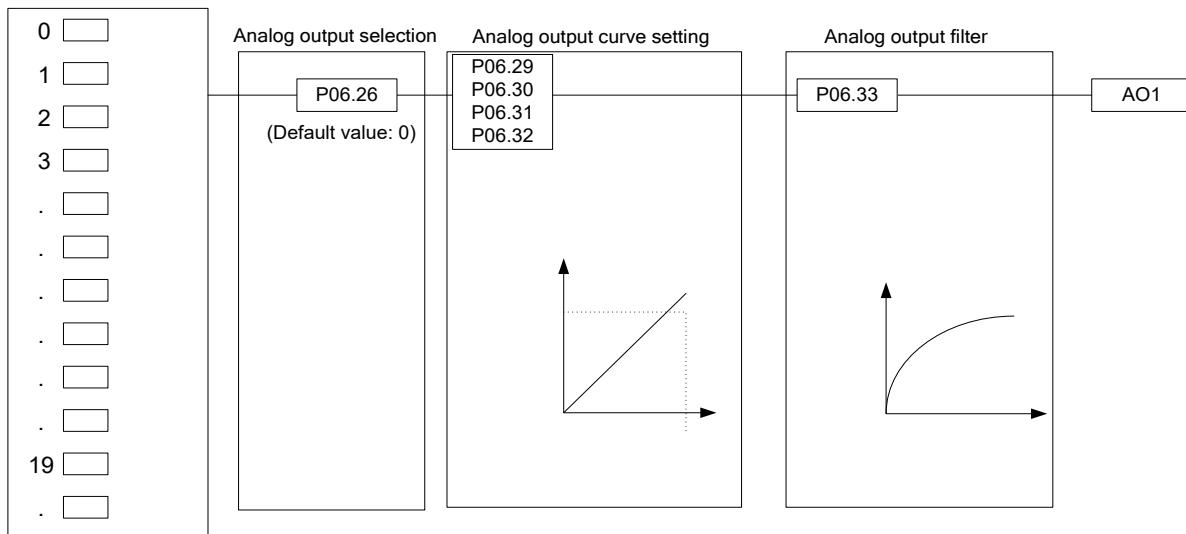

Function code	Name	Default	Setting range	Description
P06.00	HDO1 output type	0	0–1	0: High-speed pulse output 1: Digital output
P06.04	HDO1 output	0	0–63	For details, see the preceding table.
P06.05	RO1 output	1		
P06.09	Output terminal polarity selection	0x00	0x00–0x1F	When bit is 0, the output terminal is positive. When a bit is 1, the output terminal is negative. Bit 0: Reserved Bit 1: Reserved Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1
P06.16	HDO1 switch-on delay	0.000s	0.000–50.000s	Used to specify the delay time corresponding to the electrical level changes when the programmable output terminals switch on or switch off.
P06.17	HDO1 switch-off delay			
P06.18	RO1 switch-on delay			
P06.19	RO1 switch-off delay			
P17.13	Digital output terminal state	0x00	0x00–0x1F	Displays the present digital output terminal state of the inverter. Bit 0: Reserved Bit 1: Reserved Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1
P07.40	Output terminal state at present fault	0x0000	0x0000–0xFFFF	Displays the digital output terminal state of the inverter at the present fault.

Function code	Name	Default	Setting range	Description
				Bit 0: Reserved Bit 1: Reserved Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1

6.9.2. Analog input and output terminal functions


6.9.2.1. Analog input

The inverter carries two analog input terminals AI1 and AI2. The input range of AI1 is 0–10V/0–20mA, and whether AI1 uses voltage input or current input can be specified by P05.76. The input range of AI2 is -10–10V. The input source of AI3 is the keypad potentiometer. Each input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference values corresponding to the max. value and min. values.


Function code	Name	Default	Setting range	Description
P00.06	Setting channel of A frequency command	0	0–15	
P00.07	Setting channel of B frequency command	1		1: AI1 2: AI2 3: AI3
P03.11	Torque setting method selection	0	0–15	
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	0	0–15	

Function code	Name	Default	Setting range	Description
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	0	0–15	The function codes define the relationship between the analog input voltage and its corresponding setting. When the analog input voltage exceeds the range from the upper limit to the lower limit, the upper limit or lower limit is used.
P03.18	Setting source of electromotive torque upper limit for motor 1	0	0–15	
P03.19	Setting source of braking torque upper limit for motor 1	0	0–15	
P04.13	Voltage setting channel selection	0	0–15	
P09.00	PID reference source selection	0	0–15	
P09.02	PID feedback source selection	0	0–15	
P05.42	AI1 lower limit	0.00V	0.00V–P05.44	
P05.43	Corresponding setting of AI1 lower limit	0.0%	-300.0–300.0%	
P05.44	AI1 upper limit	10.00V	P05.42–10.00V	
P05.45	Corresponding setting of AI1 upper limit	100.0%	-300.0–300.0%	
P05.46	AI1 input filter time	0.030s	0.000–10.000s	
P05.47	AI2 lower limit	-10.00V	0.00V–P05.49	
P05.48	Corresponding setting of AI2 lower limit	-100.0%	-300.0–300.0%	
P05.49	AI2 middle value 1	0.00V	P05.47–P05.51	
P05.50	Corresponding setting of AI2 middle value 1	0.0%	-300.0–300.0%	

Function code	Name	Default	Setting range	Description
P05.51	AI2 middle value 2	0.00V	P05.49–P05.53	<p>Input filter time: to adjust the sensitivity of analog input. Increasing the value properly can enhance analog input anti-interference but may reduce the sensitivity of analog input.</p> <p>Note: AI1 supports the 0–10V/0–20mA input. When AI1 selects the 0–20mA input, the corresponding voltage of 20mA is 10V. AI2 supports the -10–+10V input. When AI2 selects the 0–20mA input, the corresponding voltage of 20mA is 10V.</p>
P05.52	Corresponding setting of AI2 middle value 2	0.0%	-300.0–300.0%	
P05.53	AI2 upper limit	10.00V	P05.51–10.00V	
P05.54	Corresponding setting of AI2 upper limit	100.0%	-300.0–300.0%	
P05.55	AI2 input filter time	0.030s	0.000–10.000s	
P05.56	AI3 lower limit	0.00V	0.00V–P05.58	
P05.57	Corresponding setting of AI3 lower limit	0.0%	-300.0–300.0%	
P05.58	AI3 upper limit	10.00V	P05.56–10.00V	
P05.59	Corresponding setting of AI3 upper limit	100.0%	-300.0–300.0%	
P05.60	AI3 input filter time	0.030s	0.000–10.000s	
P05.76	AI input signal type selection	0x0	0x0–0x3	Bit0: AI1 input signal type selection 0: Voltage 1: Current Bit1: AI2 input signal type selection 0: Voltage 1: Current
P17.19	AI1 input voltage	0.00V	0.00–10.00V	Displays the AI1 input signal.
P17.20	AI2 input voltage	0.00V	0.00V–10.00V	Displays the AI2 input signal.
P17.21	AI3 input voltage	0.00V	0.00V–10.00V	Displays the AI3 input signal.

6.9.2.2. Analog output

The inverter carries one analog output terminal (supporting the output of 0–10V/0–20mA). Analog output signal can be filtered separately, and the proportional relationship can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. Analog output signal can output motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

AO1 output relationship description:

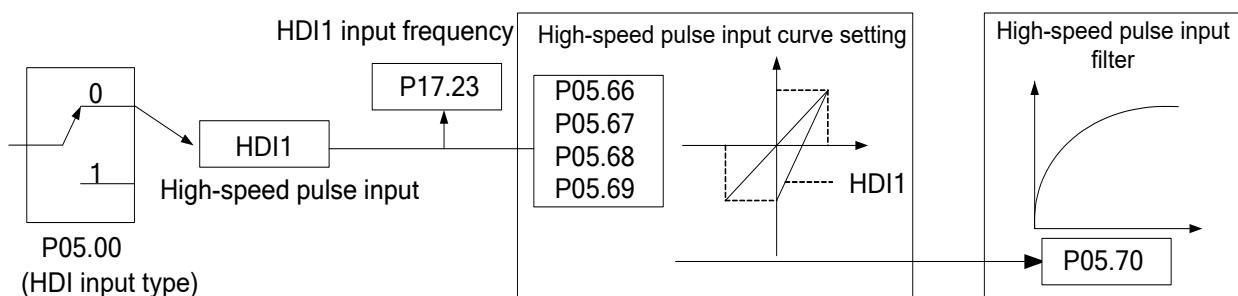
(The min. value and max. value of the output correspond to 0.% and 100.00% of the analog default output. The actual output voltage corresponds to the actual percentage, which can be set through function codes.) Output functions are as follows.

Setting	Function	Description
0	Running frequency	0–Max. output frequency
1	Set frequency	0–Max. output frequency
2	Ramp reference frequency	0–Max. output frequency
3	Rotation speed of running	0–Synchronous speed corresponding to max. output frequency
4	Output current (relative to the inverter)	0–Twice the inverter rated current
5	Output current (relative to motor)	0–Twice the motor rated current
6	Output voltage	0–1.5 times the inverter rated voltage
7	Output power	0–Twice the motor rated power
8	Set torque value (bipolar)	0–Twice the motor rated current. A negative value corresponds to 0.0% by default.
9	Output torque (absolute value)	0–Twice the motor rated torque, or -Twice the motor rated torque–0

Setting	Function	Description
10	AI1 input value	0–10V/0–20mA
11	AI2 input value	0V–10V. A negative value corresponds to 0.0% by default.
12	AI3 input value	0–10V
14	High-speed pulse HDI1 input	0.00–50.00Hz
16	Value 1 set through Modbus/Modbus TCP communication	0–1000
17	Value 2 set through Modbus/Modbus TCP communication	0–1000
20	Value 1 set through Ethernet communication	0–1000
21	Value 2 set through Ethernet communication	0–1000
22	Value 1 set through EtherCAT/PROFINET/EtherNet IP communication	0–1000
23	Value 2 set through EtherCAT/PROFINET/EtherNet IP communication	0–1000
24	Torque current (bipolar)	0–Three times the motor rated current. A negative value corresponds to 0.0% by default.
25	Exciting current	0–Three times the motor rated current. A negative value corresponds to 0.0% by default.
26	Set frequency (bipolar)	0–Max. output frequency. A negative value corresponds to 0.0% by default.
27	Ramp reference frequency (bipolar)	0–Max. output frequency. A negative value corresponds to 0.0% by default.
28	Rotational speed (bipolar)	0–Synchronous rotation speed corresponding to max. output frequency. A negative value corresponds to 0.0% by default.
31	Rotation speed of running	0–Twice the motor rated synchronous rotation speed
32	Output torque (bipolar)	0–Twice the motor rated torque. A negative value corresponds to 0.0% by default.
33	AIAO detected temperature output	AO output temperature in the AIAO temperature detection.
40	Specified function code value	The output value is calculated as follows: (Specified function value/Base value) * 100.00%

Setting	Function	Description
		+ Offset The function is configured by function codes P06.59–P06.61.

Related parameters are listed in the following.

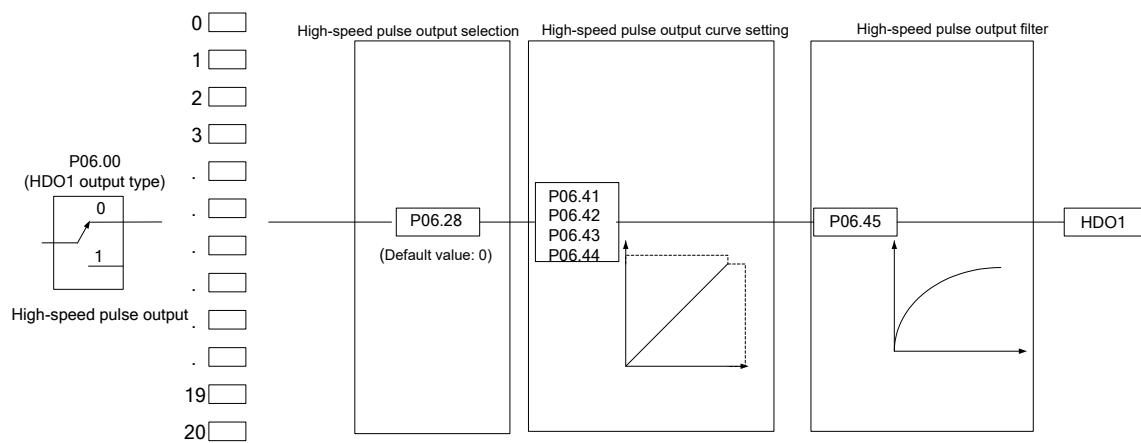

Function code	Name	Default	Setting range	Description
P06.26	AO1 output	0	0–63	For details, see the preceding table.
P06.29	AO1 output lower limit	0.0%	-300.0%–P06.31	The function codes define the relationship between the output value and analog output. When the output value exceeds the allowed range, the output uses the lower limit or upper limit.
P06.30	AO1 output corresponding to lower limit	0.00V	0.00–10.00V	When the analog output is current output, 1mA equals 0.5V.
P06.31	AO1 output upper limit	100.0%	P06.29–300.0%	In different cases, the corresponding analog output of 100% of the output value is different.
P06.32	AO1 output corresponding to upper limit	10.00V	0.00–10.00V	
P06.33	AO1 output filter time	0.000s	0.000–10.000s	

6.9.3. High-speed pulse input and output terminal functions

6.9.3.1. High-speed pulse input

The inverter supports one high-speed pulse input HDI1. HDI1 input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference values corresponding to the max. value and min. values.

Note: HDI1 high-speed pulse input ranges from 0.000kHz to 50.000kHz.


Related parameters are listed in the following.

Function code	Name	Default	Setting range	Description
P00.06	Setting channel of A frequency command	0	0–15	5: High-speed pulse HDI1 Note: To select high-speed pulse setting, set P05.00 to 0.
P00.07	Setting channel of B frequency command	1	0–15	
P03.11	Torque setting method selection	0	0–15	
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	0	0–15	
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	0	0–15	
P03.18	Setting source of electromotive torque upper limit for motor 1	0	0–15	
P03.19	Setting source of braking torque upper limit for motor 1	0	0–15	
P04.13	Voltage setting channel selection	0	0–15	
P05.00	HDI input type	0	0–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input
P05.66	HDI1 lower limit frequency	0.000kHz	0.000kHz–P05.68	-
P05.67	Corresponding setting of HDI1 lower limit frequency	0.0%	-300.0–300.0%	-
P05.68	HDI1 upper limit frequency	50.000 kHz	P05.66–50.000kHz	-
P05.69	Corresponding setting of HDI1 upper limit frequency	100.0%	-300.0–300.0%	-
P05.70	HDI1 frequency input filter time	0.030s	0.000–10.000s	-

Function code	Name	Default	Setting range	Description
P17.23	HDI1 input frequency	0.000kH z	0.000– 50.000kHz	-

6.9.3.2. High-speed pulse output

The inverter carries one high-speed pulse output terminal. High-speed pulse output signals can be filtered separately, and the proportional relationship can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. High-speed pulse output signals can output the motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

HDO1 output relationship description:

(The min. value and max. value of the output correspond to 0% and 100.00% of the default output. The actual output pulse frequency corresponds to the actual percentage, which can be set through function codes.)

Note: To use HDO1 to output any of the following functions, you need to select HDO1 as high-speed pulse output by setting P06.00 to 1. The high-speed pulse output ranges from 0.00kHz to 50.00kHz. Output functions are as follows.

Setting	Function	Description
0	Running frequency	0–Max. output frequency
1	Set frequency	0–Max. output frequency
2	Ramp reference frequency	0–Max. output frequency
3	Rotation speed of running	0–Synchronous speed corresponding to max. output frequency
4	Output current (relative to the inverter)	0–Twice the inverter rated current
5	Output current (relative to motor)	0–Twice the motor rated current
6	Output voltage	0–1.5 times the inverter rated voltage

Setting	Function	Description
7	Output power	0–Twice the motor rated power
8	Set torque value (bipolar)	0–Twice the motor rated current. A negative value corresponds to 0.0% by default.
9	Output torque (absolute value)	0–Twice the motor rated torque, or -Twice the motor rated torque–0
10	AI1 input value	0–10V/0–20mA
11	AI2 input value	0V–10V. A negative value corresponds to 0.0% by default.
12	AI3 input value	0–10V
14	High-speed pulse HDI1 input	0.00–50.00Hz
16	Value 1 set through Modbus/Modbus TCP communication	0–1000
17	Value 2 set through Modbus/Modbus TCP communication	0–1000
20	Value 1 set through Ethernet communication	0–1000
21	Value 2 set through Ethernet communication	0–1000
22	Value 1 set through EtherCAT/PROFINET/EtherNet IP communication	0–1000
23	Value 2 set through EtherCAT/PROFINET/EtherNet IP communication	0–1000
24	Torque current (bipolar)	0–Three times the motor rated current. A negative value corresponds to 0.0% by default.
25	Exciting current	0–Three times the motor rated current. A negative value corresponds to 0.0% by default.
26	Set frequency (bipolar)	0–Max. output frequency. A negative value corresponds to 0.0% by default.
27	Ramp reference frequency (bipolar)	0–Max. output frequency. A negative value corresponds to 0.0% by default.
28	Rotational speed (bipolar)	0–Synchronous rotation speed corresponding to max. output frequency. A negative value corresponds to 0.0% by default.

Setting	Function	Description
31	Rotation speed of running	0–Twice the motor rated synchronous rotation speed
32	Output torque (bipolar)	0–Twice the motor rated torque. A negative value corresponds to 0.0% by default.
33	AIAO detected temperature output	AO output temperature in the AIAO temperature detection.
40	Specified function code value	The output value is calculated as follows: (Specified function value/Base value) * 100.00% + Offset The function is configured by function codes P06.59–P06.61.

Related parameters are listed in the following.

Function code	Name	Default	Setting range	Description
P06.00	HDO1 output type	0	0–1	0: High-speed pulse output 1: Digital output Note: HDO1 uses push-pull output.
P06.41	HDO1 output lower limit	0.0%	-300.0%–P06.43	-
P06.42	HDO1 output corresponding to lower limit	0.00kHz	0.00–50.00Hz	-
P06.43	HDO1 output upper limit	100.0%	P06.41–300.0%	-
P06.44	HDO1 output corresponding to upper limit	50.00kHz	0.00–50.00Hz	-
P06.45	HDO1 output filter time	0.000s	0.000–10.000s	-

6.10. RS485 communication

The communication addresses on the communication network are unique, which is the basis of the point-to-point communication between the host controller and inverter. If the slave communication address in the message frame sent from the host controller is set to 0, it serves as a broadcast communication address. All slaves on the Modbus bus will receive the frame, but the slaves will not respond to it. The local communication address is specified by P14.00. The communication response delay is specified by P14.03, and the RS485 communication timeout time is specified by P14.04.

There are four transmission error processing methods, which can be selected through P14.05.

Function code	Name	Default	Setting range	Description
P14.00	Local communication address	1	1–247	The communication address of a slave cannot be set to 0.
P14.01	Communication baud rate setting	4	0–7	<p>Used to set the rate of data transmission between the host controller and the inverter.</p> <p>0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 115200 bps</p> <p>Note: The baud rate set on the inverter must be consistent with that on the host controller. Otherwise, the communication fails. A greater baud rate indicates faster communication.</p>
P14.02	Data bit check setting	1	0–5	<p>The data format set on the inverter must be consistent with that on the host controller. Otherwise, the communication fails.</p> <p>0: No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check (O, 8, 1) for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU</p>
P14.03	Communication response delay	5ms	0–200ms	Indicates the communication response delay, that is, the interval from when the inverter completes receiving data to when it sends response data to the host controller. If the response delay is shorter than the rectifier processing time, the rectifier sends response data to the host controller after processing data. If the delay is longer than the rectifier processing time, the rectifier does not send

Function code	Name	Default	Setting range	Description
				response data to the host controller until the delay is reached although data has been processed.
P14.04	RS485 communication timeout time	0.0s	0.0 (invalid)–60.0s	When P14.04 is set to 0.0, the communication timeout is invalid. When P14.04 is set to a non-zero value, the system reports the "RS485 communication fault" (E18) if the communication interval exceeds the value. In general, the function code is set to 0.0. When continuous communication is required, you can set the function code to monitor communication status.
P14.05	Transmission fault processing	0	0–3	0: Report an alarm and coast to stop 1: Keep running without reporting an alarm 2: Stop in enabled stop mode without reporting an alarm (applicable only to communication mode) 3: Stop in enabled stop mode without reporting an alarm (applicable to any mode)
P14.06	Modbus communication processing action selection	0x0000	0x000–0x1111	Ones place: 0: Respond to write operations 1: Not respond to write operations Tens place: 0: Communication password protection is invalid. 1: Communication password protection is valid. Hundreds place: 0: User-defined addresses specified in group P16 are invalid. 1: User-defined addresses specified in group P16 are valid. Thousands place: 0: CRC failure, with response of error type 0x06

Function code	Name	Default	Setting range	Description
				1: CRC checksum failure, without response

6.11. Monitoring parameters

Monitoring parameters mainly fall in groups P07 and P17, which are used to view and analyze the inverter control and use status. The monitored content is listed in the following.

Group	Type	Monitored content
Group P07	HMI	Inverter information, module temperature, run time, power usage, fault history, and software version.
Group P17	Basic status viewing	Frequency information Current information Voltage information Torque and power information Input terminal information Output terminal information PID regulator information Control word and status word information

6.11.1. Group P07—Human-machine interface

Function code	Name	Default	Setting range	Description
P07.12	Inverter module temperature	0.0°C	-20.0–120.0°C	-
P07.13	Control software version	Version dependent	1.00–655.35	-
P07.14	Drive software version	Version dependent	1.00–655.35	-
P07.17	Inverter model	0x0000	0x0000–0xFFFF	Bit0–bit3: Reserved Bit4–bit11: Chip type and manufacturer 0x00: DSP(TI) 0x01–0xFF: Reserved Bit12–bit15: inverter series 0x0: NXG 0x1–0xF: Reserved

Function code	Name	Default	Setting range	Description
				Note: After power failure, the function parameters are saved to the control board rather than the drive board.
P07.18	Inverter rated power	Model dependent	0.2–3000.0kW	-
P07.19	Inverter rated voltage	Model dependent	50–1200V	-
P07.20	Inverter rated current	Model dependent	0.01–600.00A	-
P07.27	Present fault type	0	0–588	0: No fault 4: Overcurrent during acceleration (E4) 5: Overcurrent during deceleration (E5) 6: Overcurrent during constant speed running (E6) 7: Overvoltage during acceleration (E7) 8: Overvoltage during deceleration (E8) 9: Overvoltage during constant speed running (E9) 10: DC bus undervoltage (E10) 11: Motor overload (E11) 12: inverter overload (E12) 13: Phase loss on input side (E13) 14: Phase loss on output side (E14) 16: Inverter module overheat (E16) 17: External fault (E17) 18: Modbus/Modbus TCP communication fault (E18) 19: Current detection fault (E19) 20: Motor autotuning fault (E20) 21: EEPROM operation error (E21) 22: PID feedback offline fault (E22) 23: Braking unit fault (E23) 24: Running time reached (E24)
P07.28	Last fault type	0	0–588	
P07.29	2nd-last fault type	0	0–588	
P07.30	3rd-last fault type	0	0–588	
P07.31	4th-last fault type	0	0–588	
P07.32	5th-last fault type	0	0–588	

Function code	Name	Default	Setting range	Description
				<p>25: Electronic overload (E25)</p> <p>27: Parameter upload error (E27)</p> <p>28: Parameter download error (E28)</p> <p>30: Ethernet communication fault (E30)</p> <p>32: To-ground short-circuit fault (E32)</p> <p>34: Speed deviation fault (E34)</p> <p>35: Mal-adjustment fault (E35)</p> <p>36: Underload fault (E36)</p> <p>40: STO safe torque off (E40)</p> <p>41: STO channel 1 safety circuit exception (E41)</p> <p>42: STO channel 2 safety circuit exception (E42)</p> <p>43: Exception in both STO channels 1 and 2 (E43)</p> <p>44: STO safety code FLASH CRC fault (E44)</p> <p>57: PROFINET communication timeout fault (E57)</p> <p>59: Motor overtemperature fault (E59)</p> <p>60: Communication card identifying failure (E60)</p> <p>63: Communication card communication timeout fault (E63)</p> <p>66: EtherCAT communication timeout fault (E66)</p> <p>92: AI1 disconnection fault (E92)</p> <p>93: AI2 disconnection fault (E93)</p> <p>94: AI3 disconnection fault (E94)</p> <p>95: EtherNet IP communication timeout (E95)</p> <p>96: No upgrade bootload (E96)</p> <p>587: Dual-CPU communication fault 1 (E587)</p> <p>588: Dual-CPU communication fault 2 (E588)</p> <p>Others: Reserved</p>

Function code	Name	Default	Setting range	Description
P07.33	Running frequency at present fault	0.00Hz	0.00–600.00Hz	-
P07.34	Ramp reference frequency at present fault	0.00Hz	0.00–600.00Hz	-
P07.35	Output voltage at present fault	0V	0–1200V	-
P07.36	Output current at present fault	0.00A	0.00–630.00A	-
P07.37	Bus voltage at present fault	0.0V	0.0–2000.0V	-
P07.38	Temperature at present fault	0.0°C	-20.0–120.0°C	-
P07.39	Input terminal status at present fault	0x0000	0x0000–0xFFFF	-
P07.40	Output terminal state at present fault	0x0000	0x0000–0xFFFF	-
P07.44	Running frequency at last fault	0.00Hz	0.00–600.00Hz	-
P07.45	Ramp reference frequency at last fault	0.00Hz	0.00–600.00Hz	-
P07.46	Output voltage at last fault	0V	0–1200V	-
P07.47	Output current at last fault	0.00A	0.00–630.00A	-
P07.48	Bus voltage at last fault	0.0V	0.0–2000.0V	-
P07.49	Temperature at last fault	0.0°C	-20.0–120.0°C	-
P07.50	Input terminal state at last fault	0x0000	0x0000–0xFFFF	-
P07.51	Output terminal state at last fault	0x0000	0x0000–0xFFFF	-
P07.55	Running frequency at 2nd-last fault	0.00Hz	0.00–600.00Hz	-

Function code	Name	Default	Setting range	Description
P07.56	Ramp reference frequency at 2nd-last fault	0.00Hz	0.00–600.00Hz	-
P07.57	Output voltage at 2nd-last fault	0V	0–1200V	-
P07.58	Output current at 2nd-last fault	0.00A	0.00–630.00A	-
P07.59	Bus voltage at 2nd-last fault	0.0V	0.0–2000.0V	-
P07.60	Temperature at 2nd-last fault	0.0°C	-20.0–120.0°C	-
P07.61	Input terminal state at 2nd-last fault	0x0000	0x0000–0xFFFF	-
P07.62	Output terminal state at 2nd-last fault	0x0000	0x0000–0xFFFF	-
P07.75	Local accumulative running time Storage time	0h	0–65535h	-
P07.76	Inverter electricity consumption high bit	0kkWh	0–65535kkWh	Used to display the electricity consumption of the inverter. Inverter electricity consumption = P07.76*1000+P07.77
P07.77	Inverter electricity consumption low bit	0kWh	0.0–999.9kWh	

6.11.2. GroupP17—Basic status viewing

6.11.2.1. Basic status viewing

Function code	Name	Default	Setting range	Description
P17.42	Motor control mode	0x000	0x000–0x122	Ones place: Control mode 0: Vector 0 1: Vector 1 2: V/F control Tens place: Control status 0: Speed control 1: Torque control 2: Reserved Hundreds place: Motor number

Function code	Name	Default	Setting range	Description
				0: Motor 1 1: Motor 2
P17.65	Inverter status word 3	0x0000	0x0000–0xFFFF	Bit 0: Running protection flag Bit 1: Running Bit 2: Running direction (1=REV, 0=FWD) Bit 3: Jogging Bit 4: Alarming Bit 5: In fault Bit 6: Running paused Bit 7: In sleep Bit 8: In PoFF state Bit 9: Undervoltage due to transient power loss Bit 10: Overvoltage stall Bit 11: Pre-exciting Bit 12: DC braking Bit 13: Identifying parameters Bit 14: Flux weakening (reserved) Bit 15: Reserved
P17.12	Digital input terminal state.	0x000	0x000–0x7FF	Displays the present digital input terminal state of the inverter. Bit 0: DI1 Bit 1: DI2 Bit 2: DI3 Bit 3: DI4 Bit 4: DI5 Bit 5: DI6 Bit 6: DI7 Bit 7: DI8 Bit 8–Bit 9: Reserved Bit 10: HDI1
P17.13	Digital output terminal state	0x000	0x00–0x1F	Displays the present digital output terminal state of the inverter. Bit 1–Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1

6.11.2.2. Frequency related information

Function code	Name	Default	Setting range	Description
P17.00	Set frequency	0.00Hz	0.00Hz–P00.03	Displays the present set frequency of the inverter.
P17.01	Output frequency	0.00Hz	0.00Hz–P00.03	Displays the present output frequency of the inverter.
P17.02	Ramp reference frequency	0.00Hz	0.00Hz–P00.03	Displays the present ramp reference frequency of the inverter.
P17.05	Motor rotation speed	0Rpm	0–65535Rpm	Displays the present motor rotation speed.
P17.10	Estimated motor frequency	0.00Hz	0.00–600.00Hz	Displays the estimated motor rotor frequency under the open-loop vector condition.
P17.14	Digital adjustment value	0.00Hz	0.00–600.00Hz	Displays the adjustment on the inverter through the UP/DOWN terminal.
P17.16	Linear speed	0	0–65535	Displays the linear speed.
P17.23	HDI1 input frequency	0.000kHz	0.000–50.000 kHz	Displays HDIA input frequency.
P17.45	Forward rotation upper-limit frequency in torque control	0.00Hz	0.00–600.00Hz	Displays the forward rotation upper-limit frequency in torque control.
P17.46	Reverse rotation upper-limit frequency in torque control	0.00Hz	0.00–600.00Hz	Displays the reverse rotation upper-limit frequency in torque control.
P17.51	Frequency set by A source	0.00Hz	0.00–600.00Hz	Displays the frequency set by A source.
P17.52	Frequency set by B source	0.00Hz	0.00–600.00Hz	Displays the frequency set by B source.
P17.59	Actual carrier frequency	0.000kHz	0.000–15.000 kHz	Displays the actual carrier frequency.

6.11.2.3. Voltage related information

Function code	Name	Default	Setting range	Description
P17.03	Output voltage	0V	0–1200V	Displays the present output voltage of the inverter.
P17.11	DC bus voltage	0.0V	0.0–2000.0V	Displays the present DC bus voltage of the inverter.
P17.19	AI1 input voltage	0.00V	0.00–10.00V	Displays the AI1 input signal.
P17.20	AI2 input voltage	0.00V	0.00V–10.00V	Displays the AI2 input signal.
P17.21	AI3 input voltage	0.00V	0.00V–10.00V	Displays the AI3 input signal.

6.11.2.4. Current related information

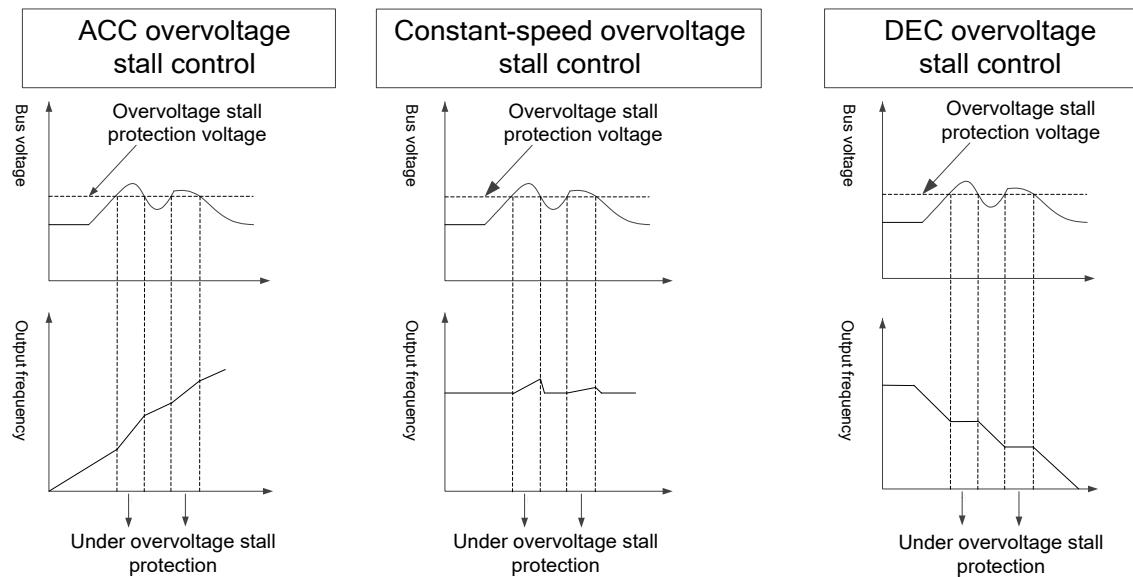
Function code	Name	Default	Setting range	Description
P17.04	Output current	0.00A	0.00–500.00A	Displays the valid value of present output current of the inverter.
P17.06	Torque current	0.00A	-300.00–300.00A	Displays the present torque current of the inverter.
P17.07	Exciting current	0.00A	-300.00–300.00A	Displays the present exciting current of the inverter.
P17.35	Exciting current reference	0.00A	-300.00–300.00A	Displays the exciting current reference value under the vector control mode.
P17.36	Torque current reference	0.00A	-300.00–300.00A	Displays the torque current reference value under the vector control mode.

6.11.2.5. Torque and power related information

Function code	Name	Default	Setting range	Description
P17.08	Motor power	0.0%	-300.0%–300.0% (Motor rated power)	Displays the present motor power; 100% is relative to the rated motor power. A positive value indicates it is the motoring state while a negative value indicates it is in the generating state.
P17.09	Motor output torque	0.0%	-250.0%–250.0%	Displays the present output torque of the inverter; 100% is relative to the motor rated torque. During

Function code	Name	Default	Setting range	Description
				forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state.
P17.15	Torque reference value	0.0%	-300.0%–300.0% (of the motor rated current)	Relative to the percentage of the rated torque of the present motor, displaying the torque reference.
P17.27	Motor power factor	1.00	-1.00–1.00	Displays the power factor of the current motor.
P17.38	Output torque	0.0Nm	-3000.0–3000.0 Nm	Displays the output torque value. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state.
P17.43	Electromotive torque upper limit	0.0%	0.0%–300.0% (of the motor rated current)	Displays the electromotive torque upper limit.
P17.44	Braking torque upper limit	0.0%	0.0%–300.0% (of the motor rated current)	Displays the braking torque upper limit.
P17.47	Inertia compensation torque	0.0%	-100.0%–100.0%	Displays the inertia compensation torque.
P17.48	Friction compensation torque	0.0%	-100.0%–100.0%	Displays the friction compensation torque.

6.11.2.6. PID regulator information

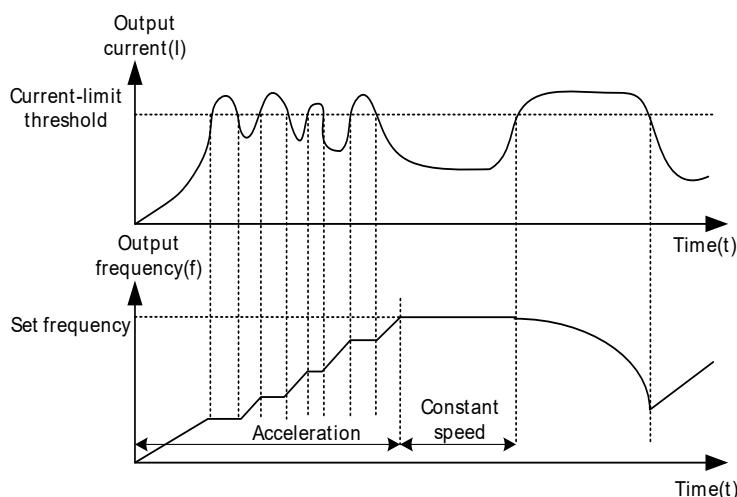

Function code	Name	Default	Setting range	Description
P17.25	PID reference value	0.0%	-100.0%–100.0%	Displays the PID reference value.
P17.26	PID feedback value	0.0%	-100.0%–100.0%	Displays the PID feedback value.
P17.53	PID proportional output	0.00%	-100.0%–100.0%	Displays the PID proportional output.
P17.54	PID integral output	0.00%	-100.0%–100.0%	Displays the PID integral output.
P17.55	PID differential output	0.00%	-100.0%–100.0%	Displays the PID differential output.
P17.56	PID present proportional gain	0.00%	0.00–100.00%	Displays the PID present proportional gain.
P17.57	PID present integral time	0.00s	0.00–10.00s	Displays the PID present integral time.
P17.58	PID present differential time	0.00s	0.00–10.00s	Displays the PID present differential time.
P17.40	Process PID output	0.00%	-100.0%–100.0%	Displays the process PID output.

6.12. Protection parameter setting

6.12.1. Overvoltage stall protection

When the motor is in power generation state (the motor speed is greater than the output frequency), the inverter bus voltage will increase continuously. When the detected bus voltage exceeds the value of P11.04 (Overvoltage stalling protection voltage), the overvoltage stalling protection function adjusts the output frequency based on the inverter acceleration/deceleration status (to be specific, if the inverter is in the acceleration or constant speed state, the inverter will increase the output frequency; if the inverter is in the deceleration state, the inverter will increase the deceleration time). In this way, the regenerative energy on the bus can be consumed, preventing against inverter overvoltage. If the function does not meet requirements in the actual application, you can adjust parameters related to the current loop and voltage loop.

Figure 6-1 Actions taken for protection against overvoltage stall

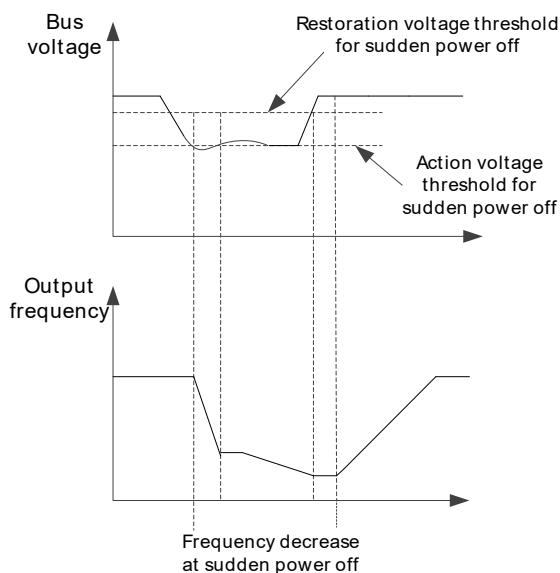

Function code	Name	Default	Setting range	Description
P11.03	Overvoltage stall protection	1	0–1	0: Disable 1: Enable
P11.04	Overvoltage stall protection Voltage	136%	120%–150% (of the standard bus voltage)	For 380V models, it is 136% by default.
		120%	120%–150% (of the standard bus voltage)	For 220V models, it is 120% by default.
P11.21	Proportional coefficient of voltage regulator during overvoltage stall	60	0–127	Specifies the proportional coefficient of the bus voltage regulator during overvoltage stalling.
P11.22	Integral coefficient of voltage regulator during overvoltage stall	5	0–1000	Specifies the integral coefficient of the bus voltage regulator during overvoltage stalling.
P11.23	Proportional coefficient of current regulator during overvoltage stall	60	0–1000	Specifies the proportional coefficient of the active current regulator during overvoltage stalling.

Function code	Name	Default	Setting range	Description
P11.24	Integral coefficient of current regulator during overvoltage stall	250	0–2000	Specifies the integral coefficient of the active current regulator during overvoltage stalling.

6.12.2. Current-limit protection

During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency, if no measures are taken, the inverter may trip due to overcurrent during acceleration.

Current-limit protection function detects output current during running, and compares it with the current-limit level defined by P11.06, if it exceeds the current-limit level, the inverter will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the inverter output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. In some heavy load scenarios, you can increase the value of P11.06 to improve the inverter output torque.


Function code	Name	Default	Setting range	Description
P11.05	Current limit selection	0x01	0x00–0x11	Ones place: Current limit action selection 0: Invalid 1: Always valid Tens: Hardware current limit overload alarm selection 0: Valid 1: Invalid

Function code	Name	Default	Setting range	Description
P11.06	Automatic current limit threshold	160.0%	50.0%–200.0%	120.0% by default in normal duty mode; 160.0% by default in heavy duty mode. Percentage of the inverter rated output current.
P11.07	Frequency decrease ratio in current limiting	10.00Hz/s	0.00–50.00Hz/s	-

6.12.3. Frequency decrease at sudden power failure

This function enables the system to keep running at sudden short-period power failure. When power failure occurs, the motor is in the power generation state, the bus voltage is kept at the action determination voltage for frequency decrease at sudden power failure, preventing the inverter from stop due to undervoltage.

If this function does not meet actual requirements, you can set parameters P11.17–P11.20. The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral coefficient of speed regulator. Increasing proportional gain or reducing integral time can accelerate dynamic response of speed loop; however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; If proportional gain is too small, stable oscillation or speed offset may occur.

Function code	Name	Default	Setting range	Description
P11.01	Frequency drop at transient power-off	0	0–1	0: Disable 1: Enable

Function code	Name	Default	Setting range	Description
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	20	0–127	Specifies the integral coefficient of the bus voltage regulator during undervoltage stalling.
P11.18	Integral coefficient of voltage regulator during undervoltage stall	5	0–1000	Specifies the integral coefficient of the bus voltage regulator during undervoltage stalling.
P11.19	Proportional coefficient of current regulator during undervoltage stall	20	0–1000	Specifies the proportional coefficient of the active current regulator during undervoltage stalling.
P11.20	Integral coefficient of current regulator during undervoltage stall	20	0–2000	Specifies the integral coefficient of the active current regulator during undervoltage stalling.

6.12.4. Cooling fan control

The fan control mode is specified by P08.41, which allows you to select different running modes and speed regulation modes.

Function code	Name	Default	Setting range	Description
P08.41	Cooling-fan running mode	0x10	0x00–0x12	<p>Ones place: Run mode</p> <p>0: Normal mode</p> <p>1: Permanent running after power-on</p> <p>2: Run mode 2</p> <p>Tens place: Speed regulation mode</p> <p>0: Disable speed regulation</p> <p>1: Speed regulation mode 1</p>

Note:

- The fan automatically runs in any mode if the inverter detects that the inverter module temperature is higher than 50°C.

- In addition to the normal running requirements, run mode 2 has the feature that the fan still runs even when the ramp frequency is greater than 0.

Running mode selection

Normal running mode: P08.41 ones place=0

The cooling fan runs when the inverter runs. The cooling fan stops 30s after the inverter stops.

Permanent running after power-on: P08.41 ones place=1

The cooling fan runs continuously as long as the inverter is powered on.

Running mode 2: P08.41 ones place=2

The cooling fan runs only when the inverter runs and the ramp frequency is greater than 0. The cooling fan stops 30s after the inverter stops.

Speed regulation mode

Full speed mode: P08.41 tens place=0

The fan cannot be speed regulated and runs at full speed.

Speed regulation mode: P08.41 tens place=1

The fan speed is regulated based on the inverter module temperature; as the temperature increases, the fan speed also increases.

6.12.5. Dynamic braking

When the inverter driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the inverter, causing the bus voltage of the inverter to rise. If the bus voltage exceeds a specific value, the inverter reports an overvoltage fault. To prevent this from happening, you need to configure braking components.

You can set the following parameters for the inverter with a built-in dynamic braking unit:

When P08.39=1 and P11.02=1, and the bus voltage exceeds the dynamic braking voltage threshold, the braking pipe is opened regardless of whether the inverter is running or stopped. If the bus voltage is less than dynamic braking voltage threshold minus 10V, the braking pipe is closed.

When P08.39=1 and P11.02=0, and the bus voltage exceeds the dynamic braking voltage threshold, the braking pipe is opened only when the inverter is running. If the bus voltage is less than dynamic braking voltage threshold minus 10V, the braking pipe is closed.

Function code	Name	Default	Setting range	Description
P08.39	Enabling dynamic braking	0	0–1	0: Disable 1: Enable
P08.40	Dynamic braking threshold voltage	For 220V: 380.0V	200.0– 2000.0V	Specifies the starting bus voltage of dynamic braking. Adjust this value properly to achieve effective

Function code	Name	Default	Setting range	Description
		For 380V: 700.0V		braking for the load. The default value varies depending on the voltage class.
P11.02	Enabling dynamic braking in standby mode	0	0–1	0: Disable 1: Enable

6.12.6. Safe torque off

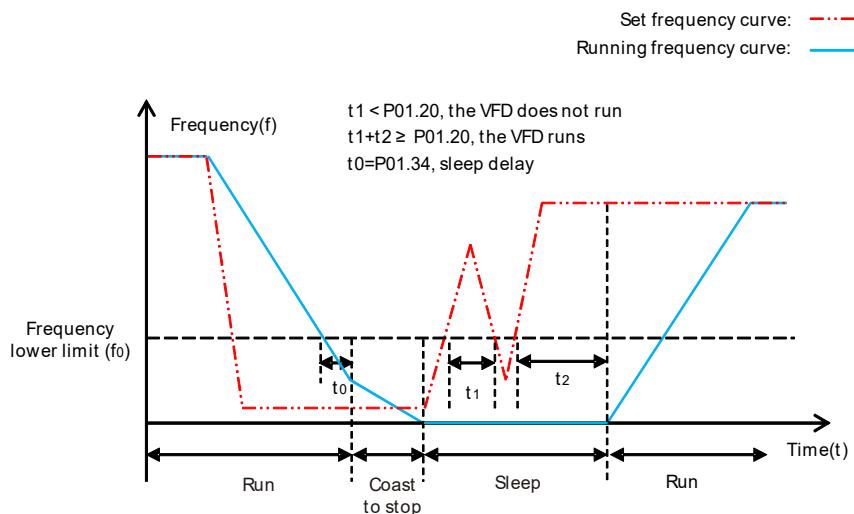
You can enable the safe torque off (STO) function to prevent unexpected startups when the inverter main power supply is not switched off. The STO function switches off the inverter output by turning off the drive signals to prevent unexpected startups of the motor. For details, see Appendix F STO function.

Function code	Name	Default	Setting range	Description
P08.55	STO lock selection	0	0–1	0: Lock upon STO alarm Lock upon STO alarm: indicates resetting is required after state restoration if STO occurs. 1: No lock upon STO alarm No lock upon STO alarm: Indicates that the STO alarm will automatically clear after state recovery from STO.

6.13. Typical applications

6.13.1. Counting

When photoelectric switch pulse signals need to be collected, you can use multifunction digital input terminals to collect signals. That is, set P05.01–P05.04 or P05.11 to 31 (to trigger the counter). To use the HDI counting function, set P05.00 to 1 first.

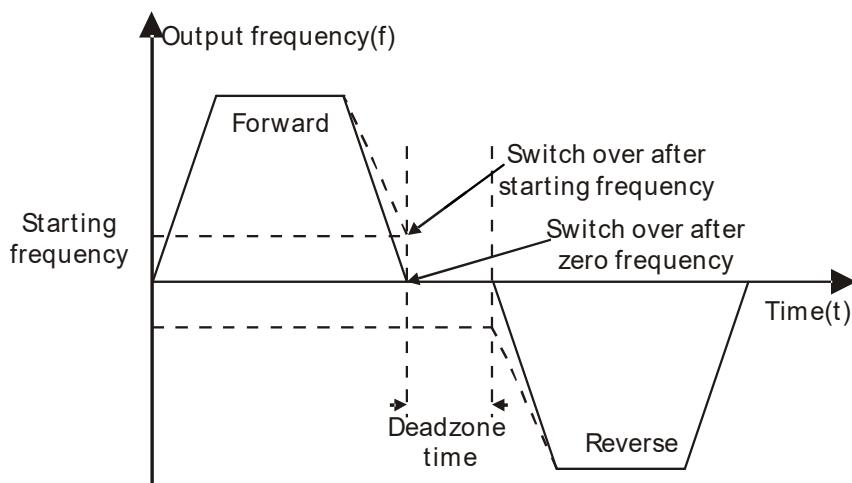

When P17.18 (Accumulative value) reaches P08.25 (Set counting value), counting restarts. Once the value of P17.18 equals that of P08.25, set the digital output function to 18 to output the ON signal. Similarly, once the value of P17.18 equals that of P08.26, set the digital output function to 19 to output the ON signal.

Function code	Name	Default	Setting range	Description
P05.00	HDI input type	0	0–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input
P05.01	Function of DI1	1	0–95	

Function code	Name	Default	Setting range	Description
P05.02	Function of DI2	4		28: Reset the counter, that is, the counting value is cleared 31: Trigger the counter, that is, the counting value is accumulated
P05.03	Function of DI3	7		
P05.04	Function of DI4	0		
P05.11	Function of HDI1	0		
P06.04	HDO1 output	0	0–63	0: Invalid 18: Set counting value reached
P06.05	RO1 output	1		19: Specified counting value reached
P08.25	Set counting value	0	P08.26–65535	-
P08.26	Designated counting value	0	0–P08.25	-
P17.18	Accumulative counting value	0	0–65535	-

6.13.2. Sleep and wakeup

According to energy saving requirements, the sleep function can be used in water supply scenarios. When the motor needs to run effectively, you can adjust the set frequency to wake it up. The timing diagram is as follows.



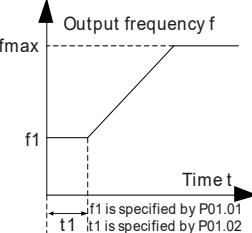
When the set frequency is lower than the frequency lower limit, and the ones place of P01.19 is set to sleep, the inverter stops according to the tens place of P01.19 and sleeps once running at the lower limit for the time specified by P01.34. If the set frequency is higher than the lower limit once again and it lasts for the time specified by P01.20, the inverter restores to the running state automatically and increases to the set frequency.

Function code	Name	Default	Setting range	Description
P01.19	Action selected when running frequency less than frequency lower limit	0	0x00–0x12	<p>The function code determines the running state of the inverter when the set frequency is lower than the lower-limit one.</p> <p>Ones place: Action selection</p> <p>0: Run at the frequency lower limit 1: Stop 2: Sleep</p> <p>Tens place: Stop mode</p> <p>0: Coast to stop 1: Decelerate to stop</p>
P01.20	Wake-up-from-sleep delay	0.0s	0.0–3600.0s	Valid only when P01.19 ones place is 2.
P01.34	Sleep delay	0.0s	0–3600.0s	-

6.13.3. Switchover between FWD run and REV run

In scenarios with the need of frequent switchover between FWD run and REV run, you can set P01.14 to increase the torque and stability in the process to decrease the current impact. When P01.14 = 0, the switching frequency point is zero (P01.15). When P01.14 = 1, the switching frequency point is starting frequency (P01.01). Refer to the following figure.

Function code	Name	Default	Setting range	Description
P01.14	FWD/REV run switching mode	1	0–2	<p>0: Switch at zero frequency 1: Switch at the starting frequency 2: Switch after the speed reaches the stop speed with a delay</p>

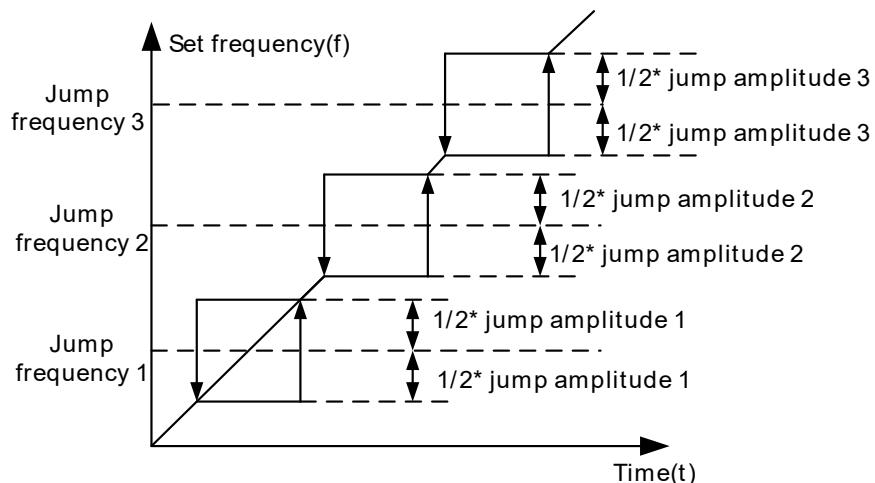

Switch at the zero or starting frequency: P01.14=0 or 1

When P01.14=0 or 1, and the switchover between FWD run and REV run is valid, the inverter decelerates to the switching frequency point. If P01.16=1, check whether the motor output frequency is less than the switching frequency point. If yes, wait for the time specified by P01.13, and then control the motor to run in the reverse direction. If no, wait for the time specified by P01.17 and then the time specified by P01.13, and then control the motor to run in the reverse direction.

Switch after the speed reaches the stop speed with a delay: P01.14=2

When P01.14=2, the deceleration process for the switchover between FWD run and REV run is similar to the process of deceleration to stop. In the deceleration process for the switchover, you can set related parameters to determine whether to enable DC braking to stop and based on the work conditions. The difference between the two processes is as follows: When the running frequency reaches the stop speed specified by P01.15 or DC braking ends, the dead zone time specified by P01.13 needs to be waited, and then the motor can be controlled to run in the reverse direction.

Function code	Name	Default	Setting range	Description
P01.01	Starting frequency of direct start	0.50Hz	0.00Hz–P00.03	The function code indicates the initial frequency during inverter start.
P01.02	Starting frequency hold time	0.0s	0.0–50.0s	Setting a proper starting frequency can increase the torque during inverter start. During the hold time of the starting frequency, the output frequency of the inverter is the starting frequency. And then, the inverter runs from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the inverter stops running and keeps in the standby state. The starting frequency is not limited in the lower limit frequency.
P01.13	FWD/REV run dead zone time	0.0s	0.0–3600.0s	Specifies the transition time of the FWD/REV run switching, the mode of which is specified by P01.14.

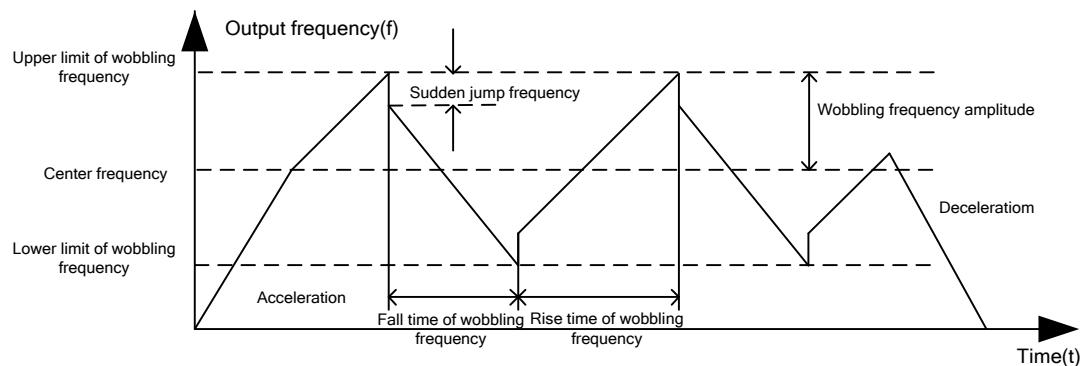


Function code	Name	Default	Setting range	Description
P01.15	Stop speed	0.50Hz	0.00Hz–P00.03	-
P01.16	Stop speed detection mode	0	0–1	0: Detect by the set speed (unique in V/F control mode) 1: Detect according to speed feedback
P01.17	Stop speed detection time	0.50s	0.00–100.00s	-

6.13.4. Jump frequency

The inverter can avoid mechanical resonance points by setting jump frequencies. The inverter has three jump frequency parameters P08.11, P08.13, and P08.15. If all jump frequencies are set to 0, this function is invalid. When the set frequency is within the jump frequency range (Jump frequency $\pm 1/2 * \text{Jump amplitude}$), if the inverter is in the acceleration phase, the inverter runs at the lower bound (Jump frequency – $1/2 * \text{Jump amplitude}$); if the inverter is in the deceleration phase, the inverter runs at the upper bound (Jump frequency + $1/2 * \text{Jump amplitude}$).

See the following figure.


Function code	Name	Default	Setting range	Description
P08.11	Jump frequency 1	0.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency.
P08.12	Jump amplitude 1	0.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency. See P08.11 to set it.

Function code	Name	Default	Setting range	Description
P08.13	Jump frequency 2	0.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency.
P08.14	Jump amplitude 2	0.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency. See P08.13 to set it.
P08.15	Jump frequency 3	0.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency.
P08.16	Jump amplitude 3	0.00Hz	0.00Hz–P00.03	P00.03 specifies the max. output frequency. See P08.15 to set it.

6.13.5. Wobbling frequency

Wobbling frequency is mainly applied in the scenarios where transverse movement and winding functions are needed such as textile and chemical fiber industries. The wobbling frequency function indicates that the inverter output frequency wobbles up or down with the set frequency as the center, and the output frequency with the wobbling frequency is impacted by the frequency upper and lower limits.

The time axis tracking is as shown in the following figure.

Wobbling frequency = Central frequency (Set frequency) x P08.17 (Amplitude of wobbling frequency)

Sudden jump frequency = Wobbling frequency x P08.18 (Amplitude of sudden jump frequency)

Function code	Name	Default	Setting range	Description
P08.17	Amplitude of wobbling frequency	0.0%	0.0–100.0%	Relative to the set frequency
P08.18	Amplitude of sudden jump frequency	0.0%	0.0–50.0%	Relative to the wobbling frequency

Function code	Name	Default	Setting range	Description
P08.19	Rise time of wobbling frequency	5.0s	0.1–3600.0s	Time taken to run from the lowest point of wobbling frequency to the highest point.
P08.20	Fall time of wobbling frequency	5.0s	0.1–3600.0s	Time taken to run from the highest point of wobbling frequency to the lowest point.
P05.00	HDI input type	0	0–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input
P05.01	Function of DI1	1	0–95	0: No function
P05.02	Function of DI2	4		26: Pause wobbling frequency (stopped at the present frequency)
P05.03	Function of DI3	7		27: Reset wobbling frequency (returned to the center frequency)
P05.04	Function of DI4	0		
P05.11	Function of HDI1	0		

7. Communication

7.1. Standard communication interface

The inverter provides RS485 and USB communication as standard configuration. The following table lists the communication terminal functions.

Table 7-1 Standard communication terminal

Interface type	Network signal	Signal description	Description
IO terminal	485+ 485-	RS485 communication	Terminal for external RS485 communication, supporting the Modbus communication protocol
USB Type-C terminal	USB	Internally converted serial communication	External USB Type-C communication terminal, supporting the Modbus communication protocol.

Note: Both RS485 communication and the internally converted USB-serial communication support the Modbus protocol. However, they belong to two separate bus networks and can be connected to the master simultaneously. If both masters send commands such as start/stop or frequency reference to the inverter, the inverter responds in the order the commands are received. Additionally, both communication methods share the same communication parameters such as slave address, baud rate, and data bit verification format. However, the USB-converted serial communication does not support timeout fault detection. The USB driver can be downloaded from the IMO official website or installed via the Workshop software.

7.2. Communication data address

The communication data includes inverter-related function parameter data, inverter status parameter data, and inverter control parameter data.

7.2.1. Function parameter address

The address of a function code consists of two bytes, with the MSB on the left and LSB on the right. Both the MSB and LSB also range from 00–FFH. The MSB is the hexadecimal form of the group number on the left of the dot mark, and LSB is that of the number on the right of the dot mark. Take P05.06 as an example: The group number is 05, that is, the MSB of the parameter address is the hexadecimal form of 05; and the number behind the dot mark is 06, that is, the LSB is the hexadecimal form of 05. Therefore, the function code address is 0506H in the hexadecimal form. For P10.01, the parameter address is 0A01H.

Note:

- The parameters in the P99 group are set by the manufacturer and cannot be read or modified. Some parameters cannot be modified when the inverter is running; some cannot be modified regardless of the inverter status. Pay attention to the setting range, unit, and description of a parameter when modifying it.

- Frequently writing to EEPROM will reduce its life time. Some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the highest-order bit of the corresponding function code address from 0 to 1. For example, if P00.07 is not to be stored in the EEPROM, you need only to modify the value in the RAM, that is, set the address to 8007H. The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

7.2.2. Non-function parameter address

In addition to modifying the parameters of the inverter, the master can also control the inverter, such as starting and stopping it, and monitoring the operation status of the inverter. The following describes status parameter data addresses and control parameter data addresses.

Status parameters

Note: Status parameters are read only.

Parameter	Address	Description
Inverter status word 1	2100H	0001H: Forward running
		0002H: Running reverse
		0003H: Stopped
		0004H: Faulty
		0005H: In POFF state
		0006H: In pre-exciting state
Inverter status word 2	2101H	Bit0: =0: Not ready to run =1: Ready to run Bit2–Bit1: =00: Motor 1 =01: Motor 2 Bit3: =0: AM =1: SM Bit4: =0: No overload alarm =1: Overload alarm Bit6–Bit5: =00: Keypad-based control =01: Terminal-based control =10: Communication-based control Bit 7: Reserved Bit8: =0: Speed control =1: Torque control Bit 9: Reserved Bit11–Bit10: =00: Vector 0 =01: Vector 1 = 10: V/F
Inverter fault code	2102H	See the description of fault types.
Inverter identification code	2103H	0x1202(NXG)
Running frequency	3000H	0–Fmax (Unit: 0.01Hz)
Set frequency	3001H	0–Fmax (Unit: 0.01Hz)
Bus voltage	3002H	0.0–2000.0V (Unit: 0.1V)
Output voltage	3003H	0–1200V (Unit: 1V)

Parameter	Address	Description
Output current	3004H	0.00–300.0A (Unit: 0.01A)
Rotation speed of running	3005H	0–65535 (Unit: 1 RPM)
Output power	3006H	-300.0%–300.0% (Unit: 0.1%)
Output torque	3007H	-250.0%–250.0% (Unit: 0.1%)
PID setting	3008H	-100.0%–100.0% (Unit: 0.1%)
PID feedback	3009H	-100.0%–100.0% (Unit: 0.1%)
Input IO state	300AH	0x000–0x7FF Corresponding to the local terminals: HDI1/Reserved/Reserved/DI8/DI7/DI6/DI5/DI4/DI3/DI2/DI1
Output IO state	300BH	0x00–0x1F Corresponding to the local terminals: RO1/HDO1/Reserved/Reserved/Reserved
Analog input 1	300CH	0.00–10.00V (Unit: 0.01V)
Analog input 2	300DH	0.00–10.00V (Unit: 0.01V)
Analog input 3	300EH	0.00–10.00V (Unit: 0.01V)
Read HDI1 high-speed pulse Input	3010H	0.00–50.00kHz (Unit: 0.01Hz)
Present step of simple PLC	3012H	0–15
External counting value	3014H	0–65535
Torque setting	3015H	-300.0%–300.0% (Unit: 0.1%)
Inverter identification code	3016H	-
Fault code	5000H	-

Control parameter

Note: Inverter control parameters can be read and written.

Parameter	Address	Description
Communication-based control command	2000H	0001H: Forward running
		0002H: Reverse running
		0003H: Forward jogging
		0004: Reverse jogging
		0005H: Stop
		0006H: Coast to stop

Parameter	Address	Description
		0007H: Fault reset 0008H: Jogging stop 0009H: Emergency stop
Communication-based setting address	2001H	Communication-based frequency setting (0–Fmax, unit: 0.01Hz)
	2002H	PID reference (0–1000, in which 1000 corresponds to 100.0%)
	2003H	PID feedback (0–1000, in which 1000 corresponds to 100.0%)
	2004H	Torque setting (-3000–3000, in which 1000 corresponds to 100.0% of the motor rated current)
	2005H	Upper limit setting of forward running frequency (0–Fmax; unit: 0.01Hz)
	2006H	Upper limit setting of reverse running frequency (0–Fmax; unit: 0.01Hz)
	2007H	Electromotive torque upper limit (0–3000, in which 1000 corresponds to 100.0% of the motor rated current)
	2008H	Braking torque upper limit (0–3000, in which 1000 corresponds to 100.0% of the motor rated current)
	2009H	Special control command word: Bit1–bit0=00: Motor 1 =01: Motor 2 Bit2: =1: Enable speed/torque control switchover =0: Disable speed/torque control switchover Bit3: =1: Clear electricity consumption data =0: Keep electricity consumption data Bit4: =1 Enable pre-excitation =0: Disable pre-excitation Bit5: =1: Enable DC braking =0: Disable DC braking
	200AH	Virtual input terminal command. Range: 0x000–0x7FF Corresponding to the local terminals: HDI1/Reserved/Reserved/DI8/DI7/DI6/DI5/DI4/DI3/DI2/DI1
	200BH	Virtual output terminal command (0x00–0x1F) Corresponding to the local terminals RO1/HDO1/Reserved/Reserved/Reserved
	200CH	Voltage setting (used for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the motor rated voltage)

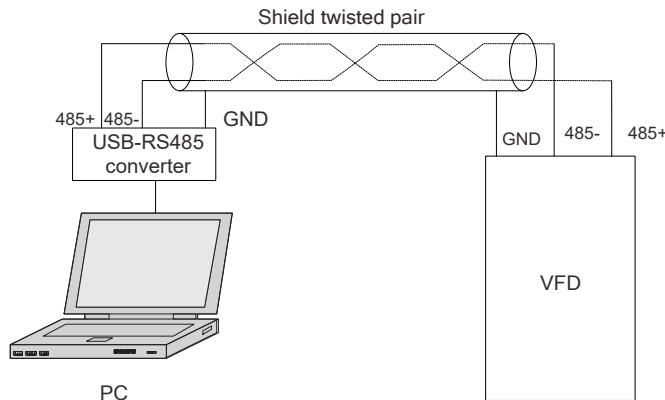
Parameter	Address	Description
	200DH	AO setting 1 (-1000→+1000, in which 1000 corresponding to 100.0%)
	200EH	AO setting 2 (-1000→+1000, in which 1000 corresponding to 100.0%)

Note: Some parameters in the preceding table are valid only after they are enabled. For example, for the running or stop operation, you must set "Channel of running commands" (P00.01) to "Communication", and set "Communication channel of running commands" (P00.02) to "Modbus".

The following table describes the encoding rules of device codes (corresponding to the identification code 1200 H of the inverter).

8 MSBs	Meaning	8 LSBs	Meaning
0x12	General mechanical type	0x02	NXG series inverter

7.3. Modbus networking


A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with any single slave or with all slaves. For separate access commands, a slave needs to return a response. For broadcast information, slaves do not need to return responses.

Generally, the PC, industry control device, or programmable logic controller (PLC) functions as the master, while inverters function as slaves.

7.3.1. Network topology

7.3.1.1. Application to one inverter

Figure 7-1 Application to one inverter

7.3.1.2. Application to multiple inverters

In practical application to multiple inverters, the daisy chain connection and star connection are commonly used.

Figure 7-2 Practical daisy chain connection application

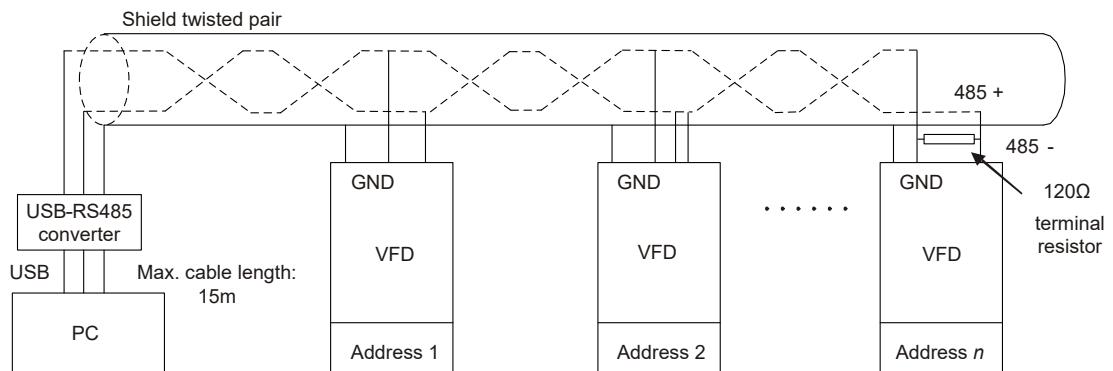
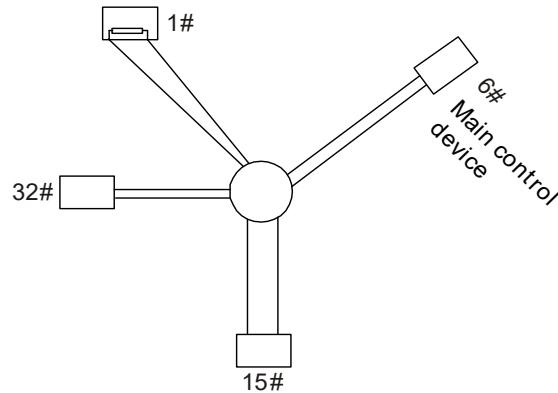
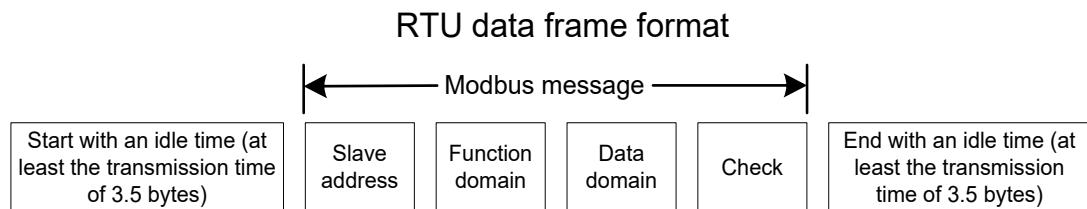



Figure 7-3 Star connection topology

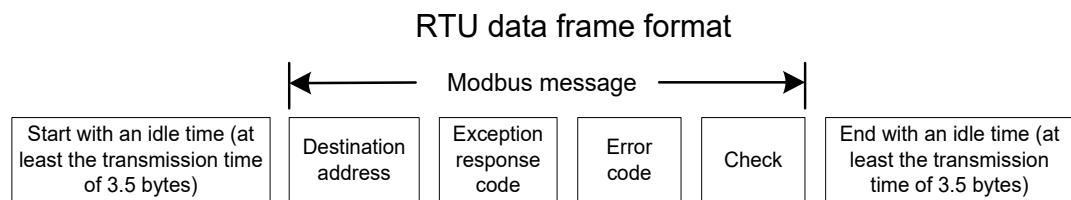
▲Note:

- When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in the figure, the two devices are #1 device and #15 device).
- Use shielded cables, if possible, in multi-device connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be duplicated.


7.3.2. RTU mode

7.3.2.1. RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (including eight bits) in the message includes two hexadecimal characters (each includes four bits). Compared with the ASCII mode, the RTU mode achieves transmission of more data at the same baud rate.


In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, command code, data, and

CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission of a new frame starts.

The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

If the slave detects a communication fault or read/write failure due to another cause, an error frame is replied.

The following table describes the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR (slave address domain)	Communication address: 0–247 (decimal system; 0 is the broadcast address)
CMD (function domain)	03H: Read slave parameter; 06H: Write slave parameter
Data domain DATA (N-1)...DATA(0)	Data of 2*N bytes Main content of the communication as well as the core of data exchanging
CRC CHK LSB	Detection value: CRC (16 bits)
CRC CHK MSB	
END (frame tail)	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.2.2. RTU communication frame error check methods

During the transmission of data, errors may occur due to various factors. Without error check, the data receiving device cannot identify data errors and may make an incorrect response. The incorrect response may cause severe problems. Therefore, the data must be checked.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

7.3.2.3. Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be sent are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

7.3.2.4. Cyclic redundancy check (CRC)

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, stop, and parity bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the least significant bit (LSB) to the most significant bit (MSB), and 0 is placed in the MSB. Then, LSB is detected. If LSB is 1, the XOR operation is performed on the current value in the register and the preset value. If LSB is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):

```
unsigned int crc_cal_value (unsigned char*data_value,unsigned char data_length)
{
    int i;
    unsigned int crc_value=0xffff;
    while (data_length--)
    {
        crc_value^=*data_value++;
        for (i=0;i<8;i++)
        {
            if (crc_value&0x0001)
                crc_value= (crc_value>>1)^0xa001;
            else
                crc_value=crc_value>>1;
        }
    }
    return (crc_value);
}
```

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation requirements on programs.

7.3.3. RTU command code

7.3.3.1. Command code 03H, reading N words (continuously up to 16 words)

The command code 03H is used by the master to read data from the inverter. The count of data to be read depends on the "data count" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by "H" indicates a hexadecimal value). One hexadecimal value occupies one byte.

The 03H command is used to read information including the parameters and running status of the inverter.

For example, if the master reads two contiguous pieces of data (that is, to read content from the data addresses 0004 H and 0005 H) from the inverter whose address is 01H, the command frame structure is described in the following.

RTU master command (from the master to the inverter) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR (address)	01H
CMD (command code)	03H
Start address MSB	00H
Start address LSB	04H
Data count MSB	00H
Data count LSB	02H
CRC LSB	85H
CRC MSB	CAH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

"T1-T2-T3-T4 (transmission time of 3.5 bytes)" in "START" and "END" indicates that the RS485 communication needs to be idle for at least the transmission time of 3.5 bytes. An idle time is required to distinguish one message from another to ensure that the two messages are not regarded as one.

"ADDR" is "01H", indicating that the command is sent to the inverter whose address is 01H. "ADDR" occupies one byte.

"CMD" is "03H", indicating that the command is used to read data from the inverter. "CMD" occupies one byte.

"Start address" indicates the address from which data is read. "Start address" occupies two bytes, with the MSB on the left and LSB on the right.

"Data count" indicates the count of data to be read (unit: word). "Start address" is "0004H" and "Data count" is "0002H", which indicates reading data from the addresses 0004H and 0005H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

RTU slave response (from the inverter to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	03H
Number of bytes	04H
Address 0004H data MSB	13H
Address 0004H data LSB	88H
Address 0005H data MSB	00H
Address 0005H data LSB	00H
CRC LSB	7EH
CRC MSB	9DH

End	T1-T2-T3-T4 (transmission time of 3.5 bytes)
-----	--

The definition of the response information is described as follows:

"ADDR" is "01H", indicating that the command is sent from the inverter whose address is 01H. "ADDR" occupies one byte.

"CMD" is "03H", indicating that the message is an inverter response to the 03H command from the master for reading data. "CMD" occupies one byte.

"Number of bytes" indicates the number of bytes between the byte (not included) and the CRC byte (not included). The value "04" indicates that there are four bytes of data between "Number of bytes" and "CRC LSB", that is, "Address 0004H data MSB", "Address 0004H data LSB", "Address 0005H data MSB", and "Address 0005H data LSB".

A record of data contains two bytes, with the MSB on the left and LSB on the right. From the response, the data in 0004H is 1388H, and that in 0005H is 0000H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

7.3.3.2. Command code 06H, writing a word

This command is used by the master to write data to the inverter. One command can be used to write only one piece of data. It is used to modify the parameters and running mode of the inverter.

For example, if the master writes 5000 (1388H) to 0004H of the inverter whose address is 02H,

RTU master command (from the master to the inverter) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
Data content MSB	13H
Data content LSB	88H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (from the inverter to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H

CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
Data content MSB	13H
Data content LSB	88H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.3.3. Command code 08H, diagnosis

Sub-function code description:

Sub-function code	Description
0000	Return data based on query information.

For example, for the query about the circuit detection information about the inverter whose address is 01H, the query and response strings are the same.

RTU master command:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	08H
Sub-function code MSB	00H
Sub-function code LSB	00H
Data content MSB	12H
Data content LSB	ABH
CRC CHK LSB	ADH
CRC CHK MSB	14H
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H

CMD	08H
Sub-function code MSB	00H
Sub-function code LSB	00H
Data content MSB	12H
Data content LSB	ABH
CRC CHK LSB	ADH
CRC CHK MSB	14H
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.3.4. Command code 10H, continuous writing

The command code 10H is used by the master to write data to the inverter. The quantity of data to be written is determined by data count, and a maximum of 16 pieces of data can be written.

For example: Write 5000 (1388H) and 50 (0032H) to 0004H and 0005H of the inverter (as the slave) whose address is 02H.

RTU master command (from the master to the inverter) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
Data count MSB	00H
Data count LSB	02H
Number of bytes	04H
MSB of data 0004H content	13H
LSB of data 0004H content	88H
MSB of data 0005H content	00H
LSB of data 0005H content	32H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (from the inverter to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
-------	--

ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
Data count MSB	00H
Data count LSB	02H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.4. Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. You can multiply a non-integer by a multiple to obtain an integer, in which the multiple is considered as a fieldbus scale.

The fieldbus scale depends on the number of decimal places in the value specified in "Setting range" or "Default". If there are n (for example, 1) decimal places in the value, the fieldbus scale m (then m=10) is the result of 10 to the power of n. For example:

Function code	Name	Parameter description	Setting range	Default
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (Valid only when P01.19 ones place=2)	0.00–3600.0	0.0s

The value specified in "Setting range" or "Default" contains one decimal place, and therefore the fieldbus scale is 10. If the value received by the master is 50, "Wake-up-from-sleep delay" of the inverter is 5.0 (5.0=50/10).

To set "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then send the following write command:

01 06 01 14 00 32 49 E7

VFD address Write command Parameter address Parameter data CRC

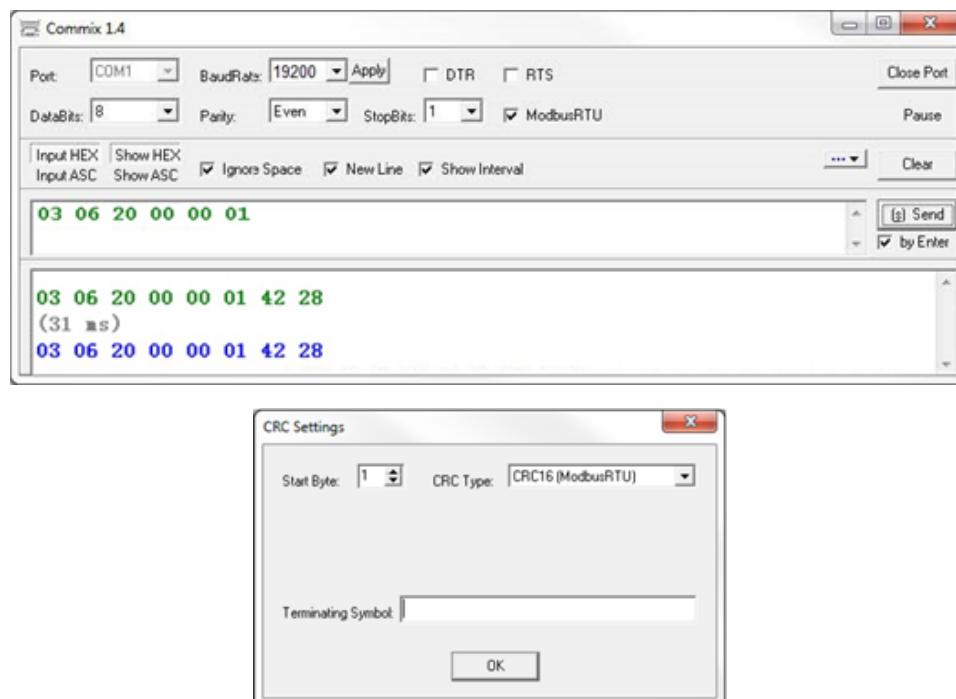
After receiving the command, the inverter converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after sending the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the inverter:

01	03	02	00 32	39 91
VFD address	Read command	2-byte data	Parameter data	CRC

The parameter data is 0032H, that is, 50, and therefore 5.0 is obtained based on the fieldbus scale (50/10=5.0). Then, the master confirms that the wake-up-from-sleep delay is 5.0s.

7.3.5. Error message response


Error message responses are sent from the inverter to the master. The following table lists the codes and definitions of the error message responses.

Code	Name	Meaning
01H	Invalid command	<p>The command code received by the upper computer is not allowed to be executed. The possible causes are as follows:</p> <p>The function code is applicable only on new devices and is not implemented on this device.</p> <p>The slave is in faulty state when processing this request.</p>
02H	Invalid data address	For the inverter, the data address at the request of the upper computer is not allowed. In particular, the combination of the register address and the number of the to-be-sent bytes is invalid.
03H	Invalid data value	<p>The received data domain contains a value that is not allowed. The value indicates the error of the remaining structure in the combined request.</p> <p>Note: It does not mean that the data item submitted for storage in the register includes a value unexpected by the program.</p>
04H	Operation failure	The parameter setting is invalid in the write operation. For example, a function input terminal cannot be set repeatedly.
05H	Incorrect password	The password entered in the password verification address is different from that is specified by P07.00.
06H	Incorrect data frame	The data frame sent from the host controller is incorrect in the length, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the downstream device.
07H	Parameter read-only	The parameter to be modified in the write operation of the host controller is a read-only parameter.
08H	Parameter cannot be modified in running	The parameter to be modified in the write operation of the host controller cannot be modified during the running of the inverter.

Code	Name	Meaning
09H	Password protection	If the host controller does not provide the correct password to unlock the system to perform a read or write operation, the error of "system being locked" is reported.

7.3.6. Communication commissioning

In the following example, a PC is used as the master, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The host controller commissioning software is the serial port commissioning assistant Commix1.4, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix.

Set **Port** to **COM1**. Set **BaudRate** consistently with P14.01. **DataBits**, **Parity**, and **StopBits** must be set consistently with P14.02. If the RTU mode is selected, choose **Input HEX** and **Show HEX**. To implement automatic CRC, you need to choose **ModbusRTU** and set **Start Byte** to **1** and **CRC Type** to **CRC16 (MODBUS RTU)** in the **CRC Settings** window. After the automatic CRC is enabled, do not enter CRC in commands. Otherwise, command errors may occur due to repeated CRC.

The commissioning command for setting the inverter whose address is 03H to run forward is as follows:

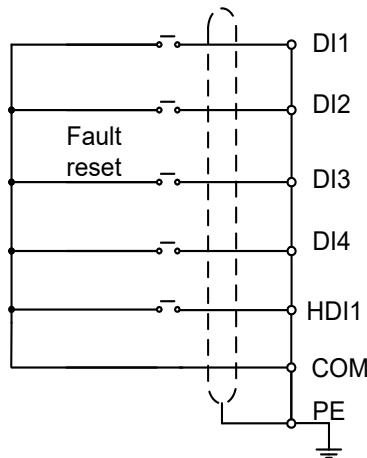
03	06	20 00	00 01	42 28
VFD address	Write command	Parameter address	Forward running	CRC

Note:

- The inverter address (P14.00) must be set to 03.

- "Channel of running commands" (P00.01) must be set to "Communication", and "Communication channel of running commands" (P00.02) to "Modbus".
- After you click **Send**, if the line configuration and settings are correct, a response transmitted by the inverter is received.

03	06	20 00	00 01	42 28
VFD address	Write command	Parameter address	Forward running	CRC


8. Fault Handling

8.1. Fault indication and reset

When the RUN/TUNE, FWD/REV, and LOCAL/REMOT indicators are on at the same time, the inverter is in abnormal state, with the keypad showing the fault code. For details about fault causes and solutions, see section 8.2 Faults and solutions. If the fault cause cannot be located, contact our local office for technical support. There are four methods to reset inverter faults:

Method 1 Press the STOP/RST key on the keypad.

Method 2 Set P05.01–P05.04 and P05.11 to 7 (Fault reset).

Method 3 Cut off the inverter power supply.

Method 4 In communication command control mode (P00.01=2), write 0007H to 2000H.

8.2. Faults and solutions

When a fault occurs, handle the fault as follows:

Step 1 Check whether the keypad display is improper. If yes, contact the local IMO office.

Step 2 If not, check the function codes in P07 group to determine the real state when the fault occurred.

Step 3 Check the following table for the exception and solution.

Step 4 Rectify the fault or ask for help.

Step 5 After confirming the fault is removed, perform fault reset, and start running.

8.2.1. Common faults and solutions

Fault code	Fault type	Possible cause	Solution
E4	Overcurrent during acceleration	<ul style="list-style-type: none"> Acceleration time is too short. Load too large or sudden change of load. 	<ul style="list-style-type: none"> Increase the acceleration time or reduce the software current limit point through P11.06; if the process requires rapid acceleration, increase the inverter capacity.

Fault code	Fault type	Possible cause	Solution
		<ul style="list-style-type: none"> Start during motor rotating. 3PH output current imbalance. When sensorless vector control is used for motor control, parameter autotuning is not performed. When V/F control is used for motor control, V/F curve setting is abnormal. There are strong external interference sources (contactor switchover or improper grounding). Grid voltage is too low. Hardware fault. 	<ul style="list-style-type: none"> Increase the inverter capacity to ensure that the motor does not experience stalling, and that the load equipment functions without any exception. Start after the motor stops or select speed tracking starts through P01.00. Check the inverter output voltage and motor resistance to ensure three-phase balance. Set the rated parameters according to the motor nameplate and perform parameter autotuning through P00.15. Adjust the frequency and voltage relationship set by the V/F curve and reduce the voltage corresponding to the frequency. To avoid strong interference, keep the motor cables away from contactors and ensure reliable grounding of the system. Improve the power quality or increase the inverter capacity. Replace the inverter.
E5	Overcurrent during deceleration	<ul style="list-style-type: none"> Deceleration time is too short. Software current limit point setting too high. Load too large or sudden change of load. 3PH output current imbalance. When sensorless vector control is used for motor control, parameter autotuning is not performed. 	<ul style="list-style-type: none"> Increase the deceleration time or reduce the software current limit point through P11.06; if the process requires rapid deceleration, increase the inverter capacity. Reduce the software current limit point through P11.06. Increase the inverter capacity to ensure that the motor does not experience stalling, and that the load equipment

Fault code	Fault type	Possible cause	Solution
		<ul style="list-style-type: none"> When V/F control is used for motor control, V/F curve setting is abnormal. There are strong external interference sources (contactor switchover or improper grounding). Hardware fault. 	<ul style="list-style-type: none"> functions without any exception. Check the inverter output voltage and motor resistance to ensure three-phase balance. Set the rated parameters according to the motor nameplate and perform parameter autotuning through P00.15. Adjust the frequency and voltage relationship set by the V/F curve and reduce the voltage corresponding to the frequency. To avoid strong interference, keep the motor cables away from contactors and ensure reliable grounding of the system. Replace the inverter.
E6	Overcurrent during constant speed running	<ul style="list-style-type: none"> Load is too large or sudden change of load. Software current limit point setting too high. 3PH output current imbalance. When sensorless vector control is used for motor control, parameter autotuning is not performed. When V/F control is used for motor control, V/F curve setting is abnormal. There are strong external interference sources (contactor switchover or improper grounding). Grid voltage is too low. Hardware fault. 	<ul style="list-style-type: none"> Increase the inverter capacity to ensure that the motor does not experience stalling, and that the load equipment functions without any exception. Reduce the software current limit point through P11.06. Check the inverter output voltage and motor resistance to ensure three-phase balance. Set the rated parameters according to the motor nameplate and perform parameter autotuning through P00.15. Adjust the frequency and voltage relationship set by the V/F curve and reduce the voltage corresponding to the frequency.

Fault code	Fault type	Possible cause	Solution
			<ul style="list-style-type: none"> • To avoid strong interference, keep the motor cables away from contactors and ensure reliable grounding of the system. • Improve the power quality or increase the inverter capacity. • Replace the inverter.
E7	Overvoltage during acceleration	<ul style="list-style-type: none"> • Acceleration time is too short. • Grid voltage is too high. • Start during motor rotating. • Load energy regeneration is too large. • Improper setting of overvoltage stall protection. 	<ul style="list-style-type: none"> • Increase the acceleration time or enable overvoltage stall protection. • Improve the power quality to comply with the inverter input voltage specifications (refer to product specifications). • Start after the motor stops or select speed tracking starts through P01.00. • Install a braking unit and energy feedback unit or remove external factors that cause the load to generate power. • Enable overvoltage stall protection through P11.03 and lower the overvoltage stall protection voltage value of P11.04.
E8	Overvoltage during deceleration	<ul style="list-style-type: none"> • Deceleration time is too short. • Grid voltage is too high. • Load energy regeneration is too large. • Improper setting of overvoltage stall protection. 	<ul style="list-style-type: none"> • Increase the deceleration time; if the process requires rapid deceleration, braking units, energy feedback units can be added, or the magnetic flux braking function can be used. • Improve the power quality to comply with the inverter input voltage specifications (refer to product specifications). • Install a braking unit and energy feedback unit or remove external factors that cause the load to generate power.

Fault code	Fault type	Possible cause	Solution
			<ul style="list-style-type: none"> Enable overvoltage stall protection through P11.03 and lower the overvoltage stall protection voltage value of P11.04.
E9	Overvoltage during constant speed running	<ul style="list-style-type: none"> Grid voltage is too high. Load energy regeneration is too large. Improper setting of overvoltage stall protection. 	<ul style="list-style-type: none"> Improve the power quality to comply with the inverter input voltage specifications (refer to product specifications). Install a braking unit and energy feedback unit or remove external factors that cause the load to generate power. Enable overvoltage stall protection through P11.03 and lower the overvoltage stall protection voltage value of P11.04.
E10	DC bus undervoltage	<ul style="list-style-type: none"> Grid voltage is too low. Abnormal bus voltage display. Abnormal precharge contactor closing. Running under heavy load in the event of input phase loss. 	<ul style="list-style-type: none"> Increase grid input voltage. Contact IMO. Contact IMO. Check for abnormal input power and loose input cables.
E11	Motor overload	<ul style="list-style-type: none"> Grid voltage is too low. Motor rated current is set incorrectly. Motor stall or load jumps violently. 	<ul style="list-style-type: none"> Increase grid input voltage. Reset the motor rated current in the motor parameter group. Check the load and adjust torque boost.
E12	Inverter overload	<ul style="list-style-type: none"> Acceleration is too fast. The motor is restarted during rotating. Grid voltage is too low. Load is too heavy. Inverter power is too small. 	<ul style="list-style-type: none"> Increase acceleration time. Avoid restart after stop. Increase grid input voltage. Select an inverter with larger power.
E13	Input side phase loss	<ul style="list-style-type: none"> Phase loss or significant fluctuations in input L1, L2, or L3. 	<ul style="list-style-type: none"> Check for abnormal input power and loose input cables.

Fault code	Fault type	Possible cause	Solution
		<ul style="list-style-type: none"> Input-side screws are loose. 	<ul style="list-style-type: none"> Set P11.00 to screen out the fault.
E14	Output side phase loss	<ul style="list-style-type: none"> Output cables are broken or short connected to the ground. UVW phase loss (or the three phases of load are seriously asymmetrical). Note: The output phase loss detection time requires at least 2.5s. After phase loss, instability may occur, potentially triggering overcurrent, overvoltage, overload, and speed deviation faults. 	<ul style="list-style-type: none"> Check for loose or broken output cables. Check for sharp load fluctuation and motor 3PH resistance imbalance.
E16	Inverter module overheat	<ul style="list-style-type: none"> Air duct is blocked or fan is damaged. Ambient temperature is too high. Long-time overload running. 	<ul style="list-style-type: none"> Ventilate the air duct or replace the fan. Keep good ventilation to lower ambient temperature. Select an inverter with larger power.
E17	External fault	<ul style="list-style-type: none"> DI terminal external fault input signal acted. 	<ul style="list-style-type: none"> Check whether external device input is normal.
E18	Modbus/Modbus TCP communication fault	<ul style="list-style-type: none"> Incorrect baud rate Communication line fault. Incorrect communication address. Communication suffers from strong interference. 	<ul style="list-style-type: none"> Set a proper baud rate. Check the communication port wiring. Set the communication address correctly. You are recommended to use shielded cables to improve anti-interference.
E19	Current detection fault	<ul style="list-style-type: none"> Abnormal motor cable or motor insulation. 	<ul style="list-style-type: none"> Remove motor cables to check. Contact IMO.
E20	Motor autotuning fault	<ul style="list-style-type: none"> Motor capacity does not match with the inverter capacity. This fault may occur if the capacity difference exceeds five power classes. 	<ul style="list-style-type: none"> Change the inverter model, or adopt V/F mode for control Check motor wiring, motor type, and parameter settings.

Fault code	Fault type	Possible cause	Solution
		<ul style="list-style-type: none"> Incorrect motor parameter setting. The parameters gained from autotuning deviate sharply from the standard parameters. Autotuning timeout. Pulse current setting is too large. 	<ul style="list-style-type: none"> Empty the motor load and re-perform autotuning. Check whether the upper limit frequency is larger than 2/3 of the rated frequency. Decrease the pulse current setting properly.
E21	EEPROM operation fault	<ul style="list-style-type: none"> Error in reading or writing control parameters EEPROM damaged. 	<ul style="list-style-type: none"> Press STOP/RST to reset. Replace the control board.
E22	PID feedback offline.	<ul style="list-style-type: none"> PID feedback offline. PID feedback source disappears. 	<ul style="list-style-type: none"> Check PID feedback signal wires. Check PID feedback source.
E23	Braking unit fault	<ul style="list-style-type: none"> Fault occurred to the braking circuit, or the braking pipe is damaged. External braking resistor with small resistance. 	<ul style="list-style-type: none"> Check the braking unit, and replace it with new braking pipe Increase the braking resistance.
E24	Running time reached	<ul style="list-style-type: none"> Actual inverter running time longer than internally set running time. 	<ul style="list-style-type: none"> Contact IMO.
E25	Electronic overload	<ul style="list-style-type: none"> The inverter reports the overload alarm according to the setting. 	<ul style="list-style-type: none"> Check whether the overload alarm point is set properly.
E27	Parameter upload error	<ul style="list-style-type: none"> Keypad cable connected improperly or disconnected. Keypad cable is too long, causing strong interference. Keypad or mainboard communication circuit error. 	<ul style="list-style-type: none"> Check the keypad cable and re-plug to determine whether a fault occurs. Check the surroundings to rule out interference source Replace the hardware and seek maintenance services.
E28	Parameter download error	<ul style="list-style-type: none"> Keypad cable connected improperly or disconnected. Keypad cable is too long, causing strong interference. 	<ul style="list-style-type: none"> Check the surroundings to rule out interference source Replace the hardware and seek maintenance services. Check whether the version of the control board software of keypad backup parameter

Fault code	Fault type	Possible cause	Solution
		<ul style="list-style-type: none"> Keypad data storage error 	copy is the same as the version of the control board software of the inverter.
E30	Ethernet communication fault	<ul style="list-style-type: none"> No data transmission between the communication card and the host controller (or PLC). 	<ul style="list-style-type: none"> Check whether the communication card wiring is loose or dropped.
E32	To-ground short-circuit fault	<ul style="list-style-type: none"> The output of the inverter is short circuited to the ground. Current detection circuit fault. Actual motor power setup deviates sharply from the inverter power. 	<ul style="list-style-type: none"> Check whether the motor is short circuited to the ground and wiring is normal. Check whether the motor wiring is normal. Replace the main control board. Reset the motor parameters properly.
E34	Speed deviation fault	<ul style="list-style-type: none"> Load too heavy or stalled. 	<ul style="list-style-type: none"> Check for overload, increase speed deviation detection time, or prolong acceleration/deceleration time. Check motor parameter settings and re-perform motor parameter autotuning. Check speed loop control parameter settings.
E35	Mal-adjustment fault	<ul style="list-style-type: none"> Load exception. Incorrect SM parameter settings. Autotuned motor parameters are inaccurate. The inverter is not connected to the motor. Flux weakening application. 	<ul style="list-style-type: none"> Check for overload or stalling. Check motor parameter and counter EMF settings. Re-perform motor parameter autotuning. Increase the maladjustment detection time. Adjust flux weakening coefficient and current loop parameters.
E36	Underload fault	<ul style="list-style-type: none"> The inverter reports the underload alarm according to the setting. 	<ul style="list-style-type: none"> Check the load and overload alarm thresholds.

Fault code	Fault type	Possible cause	Solution
E40	Safe torque off	<ul style="list-style-type: none"> Safe torque off function is enabled by external forces. 	<ul style="list-style-type: none"> -
E41	Safety circuit exception of STO channel 1	<ul style="list-style-type: none"> The wiring of STO is improper Fault occurred to external switch of STO. Channel safety circuit hardware fault. 	<ul style="list-style-type: none"> Check whether terminal wiring of STO is proper and firm enough. Check whether the external switch of STO can work properly Replace the control board. Note: Re-power on is required to remove the fault.
E42	Safety circuit exception of STO channel 2		
E43	Exception to both STO channel 1 and channel 2	<ul style="list-style-type: none"> Hardware fault occurred at STO circuit. 	<ul style="list-style-type: none"> Replace the control board.
E44	STO safety code FLASH CRC check fault	<ul style="list-style-type: none"> Drive board fault. 	<ul style="list-style-type: none"> Replace the drive board.
E57	PROFINET communication timeout	<ul style="list-style-type: none"> No data transmission between the communication card and the host controller (or PLC). 	<ul style="list-style-type: none"> Check whether the communication card wiring is loose or dropped.
E59	Motor overtemperature fault	<ul style="list-style-type: none"> Equipment or ambient temperature too high. AI/AO detected temperature inaccurate. DI4 input motor overtemperature signal. 	<ul style="list-style-type: none"> Lower the equipment or ambient temperature. Replace the temperature measuring resistor. Check the external temperature measuring terminal signal.
E60	Communication card identifying failure	<ul style="list-style-type: none"> There is data transmission in communication card interface, but the card type cannot be identified. 	<ul style="list-style-type: none"> Check whether the expansion card in the slot is supported. Stabilize the expansion card interface after power-off, and check whether the fault persists at next power-on.
E63	Communication card communication timeout fault	<ul style="list-style-type: none"> No data transmission in the communication card interface. 	<ul style="list-style-type: none"> Check whether the insertion port or card slot is damaged. If yes, replace the insertion port or card slot after power-off.

Fault code	Fault type	Possible cause	Solution
E66	EtherCAT communication timeout	<ul style="list-style-type: none"> No data transmission between the communication card and the host controller (or PLC). 	<ul style="list-style-type: none"> Check whether the communication card wiring is loose or dropped.
E92	AI1 disconnection	<ul style="list-style-type: none"> AI1 input too low. AI1 wiring disconnected. 	<ul style="list-style-type: none"> Connect a 5V or 10mA power source to check whether the input is normal. Check the wiring or replace the cable.
E93	AI2 disconnection	<ul style="list-style-type: none"> AI2 input is too low. AI2 wiring disconnected. 	
E94	AI3 disconnection	<ul style="list-style-type: none"> AI3 input is too low. AI3 wiring disconnected. 	
E95	EtherNet IP communication timeout	<ul style="list-style-type: none"> No data transmission between the communication card and the host controller (or PLC). 	<ul style="list-style-type: none"> Check whether the communication card wiring is loose or dropped.
E96	No upgrade bootloader	<ul style="list-style-type: none"> Upgrade bootloader missing. 	<ul style="list-style-type: none"> Contact IMO.
E587	Dual CPU communication fault 1	<ul style="list-style-type: none"> Dual CPU communication fault. 	<ul style="list-style-type: none"> Contact IMO.
E588	Dual CPU communication fault 2		

8.2.2. Other status

Display code	Status type	Possible cause	Solution
PoFF	System power failure	The system is powered off, or the bus voltage is too low.	Check the grid conditions.

8.3. Countermeasures on common interference

8.3.1. Interference problems of meter switch and sensors

Symptom	Solution
The upper or lower limit is wrongly displayed, for example, 999 or -999.	<ul style="list-style-type: none"> Check and ensure that the sensor feedback cable is 20cm or farther away from the motor cable.
The display of values jumps (usually occurring on pressure transmitters).	<ul style="list-style-type: none"> Check and ensure that the ground wire of the motor is connected to the PE terminal of the inverter (if the ground wire of the motor has been connected to the ground block of the
The display of values is stable, but there is a large deviation, for example, the temperature is dozens of degrees higher	

Symptom	Solution
than the common temperature (usually occurring on thermocouples).	inverter, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than $1.5\ \Omega$). At the same time, you need to fasten the EMC AC screw and EMC DC screw/clip on the inverter.
A signal collected by a sensor is not displayed but functions as a drive system running feedback signal. For example, the inverter is expected to decelerate when the upper pressure limit of the compressor is reached, but in actual running, it starts to decelerate before the upper pressure limit is reached.	<ul style="list-style-type: none"> Try to add a safety capacitor of $0.1\ \mu\text{F}$ to the signal end of the feedback signal terminal of the sensor.
All kinds of meters (such as frequency meter and current meter) connected to the inverter AO terminal (AO1) display very inaccurate values.	<ul style="list-style-type: none"> Try to add a safety capacitor of $0.1\ \mu\text{F}$ to the power end of the sensor meter (pay attention to the voltage of the power supply and the voltage endurance of the capacitor).
Proximity switches are used in the system. After the inverter is started, the indicator of a proximity switch flickers, and the output level flips.	<ul style="list-style-type: none"> For interference when connecting the inverter analog output (AO1) terminal to a meter: If AO1 uses $0\text{--}20\text{mA}$ current signal, add a capacitor of $0.47\ \mu\text{F}$ between the AO1 and GND terminals; if AO1 uses $0\text{--}10\text{V}$ voltage signal, add a capacitor of $0.1\ \mu\text{F}$ between the AO1 and GND terminals. The signal cable needs to use the shielded cable, and the shield layer must be grounded reliably to the PE or GND.

Note:

- When a decoupling capacitor is required, add it to the terminal of the device connected to the sensor. For example, if a thermocouple is to transmit signals of $0\text{--}20\text{mA}$ to a temperature meter, the capacitor needs to be added on the terminal of the temperature meter.; if an electronic ruler is to transmit signals of $0\text{--}30\text{V}$ to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.
- If a large number of meters or sensors are disturbed, it is recommended that you configure an external C2 filter on the inverter input power end.

8.3.2. Interference on RS485 communication

Symptom	Solution
Check whether the RS485 communication bus is disconnected or in poor contact.	<ul style="list-style-type: none"> Arrange the communication cables and motor cables in different cable trays.
Check whether the two ends of line A or B are connected reversely.	<ul style="list-style-type: none"> In multi-inverter application scenarios, adopt the chrysanthemum connection mode to connect the communication cables between inverters, which can improve the anti-interference capability.
Check whether the communication protocol of the inverter is consistent with that of the upper computer. Check whether the communication protocol	<ul style="list-style-type: none"> In multi-inverter application scenarios, check and ensure that the driving capacity of the master is sufficient.

Symptom	Solution
(such as the baud rate, data bits, and check bit) of the inverter is consistent with that of the host computer.	<ul style="list-style-type: none"> In the connection of multiple inverters, you need to configure one $120\ \Omega$ terminal resistor on each end. Check and ensure that the ground wire of the motor is connected to the PE terminal of the inverter (if the ground wire of the motor has been connected to the ground block of the inverter, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than $1.5\ \Omega$). At the same time, you need to fasten the EMC AC screw and EMC DC screw/clip on the inverter. Do not connect the inverter and motor to the same ground terminal as the host controller (such as the PLC, HMI, and touch screen). It is recommended that you connect the inverter and motor to the power ground and connect the host controller separately to a ground stud. Try to short the signal reference ground terminal (GND) of the inverter with that of the host controller to ensure that ground potential of the communication chip on the control board of the inverter is consistent with that of the communication chip of the host controller. Try to short GND of the inverter to its ground terminal (PE). Try to add a safety capacitor of $0.1\ \mu\text{F}$ at the power supply end of the host controller (PLC, HMI, or touch screen). Alternatively, use a magnet ring (Fe-based nanocrystalline magnet rings are recommended). Pass the L/N cable or +/- cable of the host controller power supply through the magnet ring in the same direction and wind around the magnet ring for 8 turns.

8.3.3. Failure to stop and indicator shimmering due to motor cable coupling

Symptom	Solution
Failure to stop In an inverter system where a DI terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started	<ul style="list-style-type: none"> Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable. Add a safety capacitor of $0.1\ \mu\text{F}$ between the digital input (DI) terminal and the COM terminal.

properly, the DI terminal cannot be used to stop the system.	<ul style="list-style-type: none"> • Connect the digital input (DI) terminal that controls the start and stop to other idle digital input terminals in parallel. For example, if DI1 is used to control the start and stop and DI4 is idle, you can try to short connect DI1 to DI4.
Indicator shimmering After the inverter is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmer, blink, or emit unusual sounds unexpectedly.	

Note: If the controller (such as PLC) in the system controls more than five inverters at the same time through digital input terminals, this scheme is not applicable.

8.3.4. Leakage current and interference on RCD

- Working principle

Inverters output high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of an inverter and the heat sink and that between the stator and rotor of a motor may inevitably cause the inverter to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of an inverter may cause maloperation of an RCD.

- Rules for selecting RCDs

1. Inverter systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA, and the inverters are grounded reliably.
2. For RCDs, the time limit of an action needs to be longer than that of a next action, and the time difference between two actions needs to be longer than 20ms, for example, 1s, 0.5s, or 0.2s.
3. For circuits in inverter systems, electromagnetic RCDs are recommended. Electromagnetic RCDs have strong anti-interference capability and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD
Low cost, high sensitivity, small in volume, susceptible to voltage fluctuation of the grid and ambient temperature, and weak anti-interference capability	Requires highly sensitive, accurate, and stable zero-phase sequence current transformer; uses permalloy high-permeability materials; complex manufacturing process; high cost; not affected by power supply voltage fluctuations or ambient temperature; strong anti-interference capability

Symptom	Solution
RCD misoperation at the transient inverter power-on	<p>Solution to RCD misoperation (handling the inverter)</p> <ul style="list-style-type: none"> • Remove the EMC AC screw and EMC DC screw/clip from the inverter. • Reduce the carrier frequency to 1.5 kHz (P00.14 = 1.5). • Change the modulation method from SVPWM to DPWM (P08.42 = 00).
RCD misoperation after inverter running	<p>Solution to RCD misoperation (handling the system power distribution)</p> <ul style="list-style-type: none"> • Ensure that the power cable is not submerged in water. • Verify that cables are intact and not spliced or damaged. • Confirm that the neutral wire is not secondarily grounded. • Ensure the main power cable terminal has good contact with the air switch or contactor (all screws tightened). • For single-phase powered devices, ensure that earth wires are not used as neutral wires. • Avoid using shielded cables for inverter power and motor cables.

8.3.5. Live device housing

- Live device housing description

After the inverter is started, there is sensible voltage on the housing, and you may feel an electric shock when touching the housing. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the inverter is powered on but not running.

Symptom	Solution
Live device housing	<ul style="list-style-type: none"> • If a power distribution grounding or ground stud is available on-site, connect the inverter cabinet housing to it. • If no grounding is available on-site, connect the motor housing to the inverter grounding terminal (PE) and ensure that the inverter EMC AC screw and EMC DC screw/clip are properly fastened.

9. Inspection and Maintenance

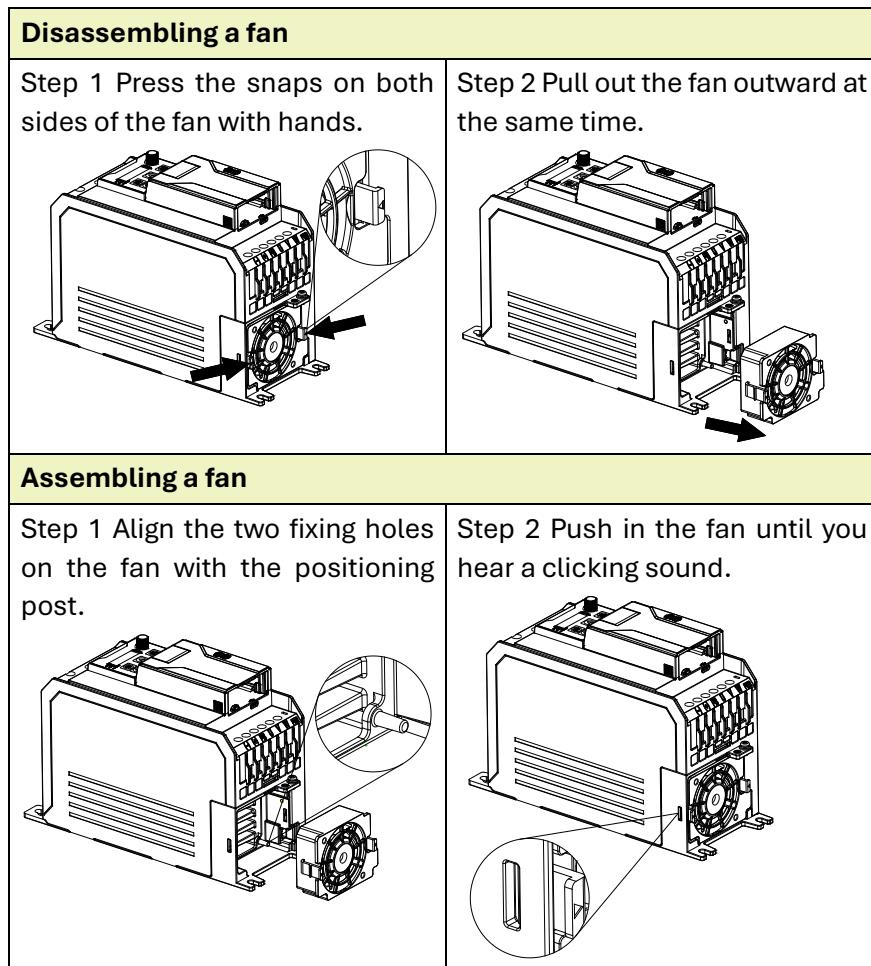
9.1. Daily inspection and regular maintenance

The inverter's internal components age due to environmental factors such as temperature, humidity, dust, and vibration, which may cause potential failures or reduce service life. To extend the inverter's service life and prevent safety hazards, daily inspection and regular maintenance are required.

Check category	Content	Method
Daily inspection: Recommended on each day.		
Ambient environment	Whether the ambient temperature, humidity, vibration, dust, gas, and oil are too great, and whether there is condensation or water droplets inside and outside the machine	Visual inspection and instrument measurement
	Whether there are foreign matters, such as tools, or dangerous substances placed nearby	Visual inspection
Power supply voltage	Whether the voltage between the main circuit and control circuit is normal	Multimeter or voltage meter
Keypad	Whether display is clear	Visual inspection
	Whether some characters or fields are displayed incompletely	Visual inspection
Fan	Whether it runs normally	Visual inspection
Load	Whether the motor is overloaded or overheating, or it sounds abnormally.	Visual inspection
Regular maintenance: Recommended on a quarterly basis, especially in harsh environments such as dust, oil, or corrosive gases. Before regular maintenance, cut off the power and wait at least 15 min.		
Complete machine	Whether the bolts become loose or come off	Visual inspection
	Whether the machine is deformed, cracked, or damaged, or the color changes due to overheating and aging	Visual inspection
	Whether much dirt or dust is attached	Visual inspection

Check category	Content	Method
	Whether there is abnormal sound or vibration, odor, discoloration (transformer, reactor and fan)	Auditory, olfactory, and visual inspection
Motor	Whether the installation is secure, motor insulation is normal, and the fan runs properly	Instrument or visual inspection
Cable	Whether there is discoloration, deformation, or damage	Visual inspection
	Whether the cable connectors or bolts become loose	Visual inspection
Connection terminal	Whether there is overheating or damage	Visual inspection
Electrolytic capacitor	Whether there is electrolyte leakage, discoloration, cracks, and housing expansion	Visual inspection
	Whether the safety valve is exposed outside	Visual inspection
External braking resistor	Whether there is displacement caused due to overheating	Olfactory and visual inspection
	Whether aging, skin breakage, or wire damage occurs to the resistor cable	Visual inspection, or measuring with a multimeter after removing one cable end
Relay	Whether there is vibration sound during running	Auditory inspection
Control PCB and connector	Whether the screws and connectors become loose	Screw them up.
	Whether there is unusual smell or discoloration	Olfactory and visual inspection
	Whether there are corrosion or rust stains	Visual inspection
Ventilation duct	Whether there are foreign matters blocking or attached to the cooling fan, air inlets, or air outlets	Visual inspection

For more details about maintenance, contact the local IMO office, or visit our website www.imopc.com.


9.2. Cooling fan replacement

The wearing part of inverter is the cooling fan, of which the service life is closely related to the running environment and maintenance condition.

- Possible damage cause

Bearing wear, blade aging, water, oil, dust and other environmental factors may cause circuit board damage.

- Cooling fan replacement procedure

Note: Before disassembling or installing the inverter, stop the inverter, cut off the power, and wait at least 5 minutes.

9.3. Reforming

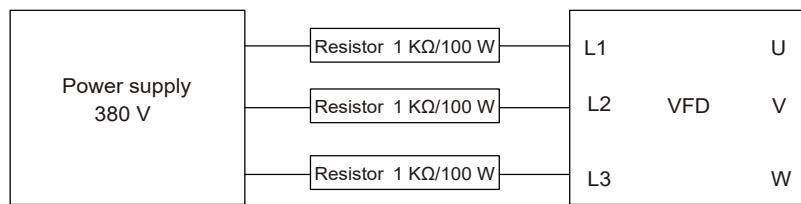
If the inverter has been left unused for a long time, you need to follow the instructions to reform the DC bus electrolytic capacitor before using it. The storage time is calculated from the date the inverter is delivered. For detailed operation, contact IMO.

Storage time	Operation principle
Less than 1 year	No charging operation is required.

Storage time	Operation principle
1 to 2 years	Before the first run, apply the voltage of one class lower than the inverter voltage class to the inverter for 1 hour.
2 to 3 years	Use a voltage controlled power supply to charge the inverter: <ul style="list-style-type: none"> • Charge the inverter at 25% of the rated voltage for 30 minutes, • and then charge it at 50% of the rated voltage for 30 minutes, • at 75% for another 30 minutes, • and finally charge it at 100% of the rated voltage for 30 minutes.
More than 3 years	Use a voltage controlled power supply to charge the inverter: <ul style="list-style-type: none"> • Charge the inverter at 25% of the rated voltage for 2 hours, • and then charge it at 50% of the rated voltage for 2 hours, • at 75% for another 2 hours, • and finally charge it at 100% of the rated voltage for 2 hours.

The method for using a voltage controlled power supply to charge the inverter is described as follows:

The selection of a voltage controlled power supply depends on the power supply of the inverter. For inverters with an incoming voltage of 1PH/3PH 230 V AC, you can use a 230 V AC/2 A voltage regulator. Both 1PH and 3PH inverters can be charged with a 1PH voltage controlled power supply (connect L+ to L1, and N to L2 or L3). All the DC bus capacitors share one rectifier, and therefore they are all charged.


For inverters of a high voltage class, ensure that the voltage requirement (for example, 380 V) is met during charging. Capacitor charging requires little current, and therefore you can use a small-capacity power supply (2 A is sufficient).

The method for using a resistor (incandescent lamp) to charge the drive is described as follows:

If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 380 V drive device, use a resistor of 1 kΩ/100W. If the voltage of the power supply is no higher than 380 V, you can also use an incandescent lamp of 100W. If an incandescent lamp is used, it may go off or the light may become very weak.

Figure 9-1 380V drive device charging circuit example

Appendix A Expansion card

The inverter supports the use of communication expansion cards to enhance communication capabilities. The following table lists the supported expansion cards. The expansion cards are optional and must be purchased separately.

A.1 Model definition

NXG - E - ETH

Figure A-1 Expansion card physical image

A.2 Specifications

Table A-1 Expansion card specifications

Parameter	Specifications
Working temperature	-10–+50°C
Storage temperature	-20–60°C
Relative humidity	5%–95% (No condensation)
Operating environment	No corrosive gas
Mounting method	Fixed with snap-fits and screws
Cooling method	Natural air cooling
Communication rate	100M bit/s
Network topology	Supports both linear and star network topologies, with certain protocols also accommodating ring network topology.

Figure A-2 Expansion card drawing

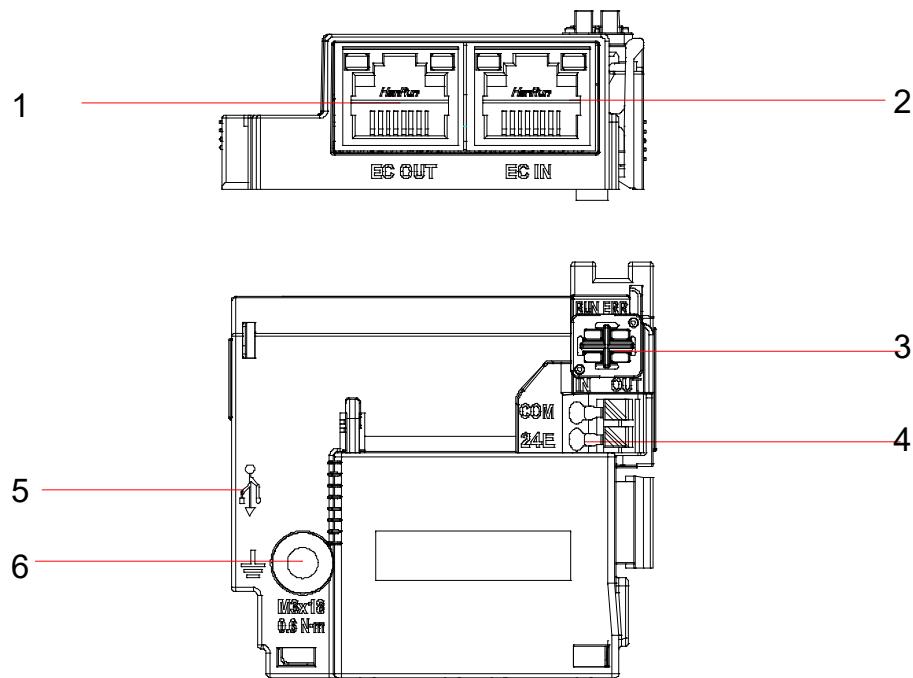


Table A-2 Product component description

No.	Name	Description
1	Communication port (EC OUT)	Supported bus types: PROFINET, EtherCAT, EtherNet IP, and Modbus TCP EtherCAT can be only used in the OUT port, while the other three protocols do not distinguish the direction.
2	Communication port (EC IN)	Supported bus types: PROFINET, EtherCAT, EtherNet IP, and Modbus TCP EtherCAT can be only used in the IN port, while the other three protocols do not distinguish the direction.
3	Indicator	For details, see section A.4 Indicator.
4	+24E	An external 24V connection can be used for communication debugging.
5	Type-C	Manufacturer reserved
6	Fixing hole	Used for expansion card and control board installation and fixing.

A.3 Protocol parameter

Table A-3 Expansion card protocol selection

Function code	Protocol	Description
P24.00	0–15 0: PROFINET 1: EtherCAT 2: Reserved 3: EtherNet IP 4: Modbus TCP 5: EtherNet UDP 6: PROFINET+EtherNet UDP 7: EtherCAT+EtherNet UDP 8–14: Reserved 15: No communication expansion card	The factory setting is 0.

Table A-4 Protocol description

Protocol	Description
PROFINET	1. Supports the PROFINET protocol, accommodating PROFINET IO devices, medium redundancy protocol (MRP), and system redundancy protocol (S2). Equipped with the slave station GSDML configuration file, it can communicate with Siemens PLC and other master stations. 2. Enables basic operations on inverters, such as reading and writing process values, reading status values, and reading/writing function codes. This communication card supports up to 32 IOs. 3. Applicable to linear, star, and ring network topologies.
EtherCAT	1. Supports the CiA301 and CiA402 CoE protocols. Configured with a slave station XML configuration file, it can communicate with Beckhoff PLC, and other master stations. 2. Supports PDO and SDO services, manufacturer-defined object dictionaries, and SDO reading/writing of inverter function codes, meeting the EtherCAT compliance testing certification requirements within the factory. 3. Applicable to linear, star, and ring network topologies. 4. Equipped with two RJ45 ports, designated for IN and OUT directions.
Ethernet IP	1. Supports ODVA standards and DLR ring protocol. When configured with a slave station EDS configuration file, it can communicate with Rockwell PLC and other master stations.

Protocol	Description
	<p>2. Enables basic operations on inverters, such as reading and writing process values, reading status values, and reading/writing function codes. This communication card supports up to 32 IOs.</p> <p>3. Applicable to linear, star, and ring network topologies.</p>
Modbus TCP	<p>1. Supports the Modbus TCP protocol. A Modbus TCP slave station can communicate with multiple master stations simultaneously. It can communicate with Schneider PLC, and other master stations.</p> <p>2. Enables basic operations on inverters, such as reading and writing process values, reading status values, and reading/writing function codes.</p> <p>3. Applicable to linear and star network topologies.</p>

A.4 Indicator

Table A-5 PROFINET communication indicators

Indicator	Color	Definition	Function
RUN	Green	Steady on	Communication established successfully, with normal IO data exchange.
		Blinking (on for 500ms, off for 500ms)	Communication established successfully, but without valid IO data exchange.
		Blinking (on for 100ms, off for 100ms)	In the communication configuration phase. For example, when DCP configuration commands are triggered, it will blink simultaneously with the ERR indicator.
		Steady off	The communication between the communication card and PLC is not in Online state.
IN(HOST)	Green	Steady on	The communication card is in the process of handshaking with the inverter.
		Blinking (on for 500ms, off for 500ms)	The communication card and inverter communicate normally. Note: After the handshaking is completed, it should blink regardless of whether there is data transmission between the communication card and the main control board.
		Steady off	The communication card is in the initialization or parameter configuration phase.

Indicator	Color	Definition	Function
OUT(DATA)	Green	Steady off	No data update or abnormal update between the communication card and main control board.
		Blinking (on for 500ms, off for 500ms)	The data update between the communication card and main control board is normal.
ERR	Red	Steady off	No fault
		Blinking (on for 100ms, off for 100ms)	Communication establishment is abnormal.

Table A-6 EtherCAT communication indicators

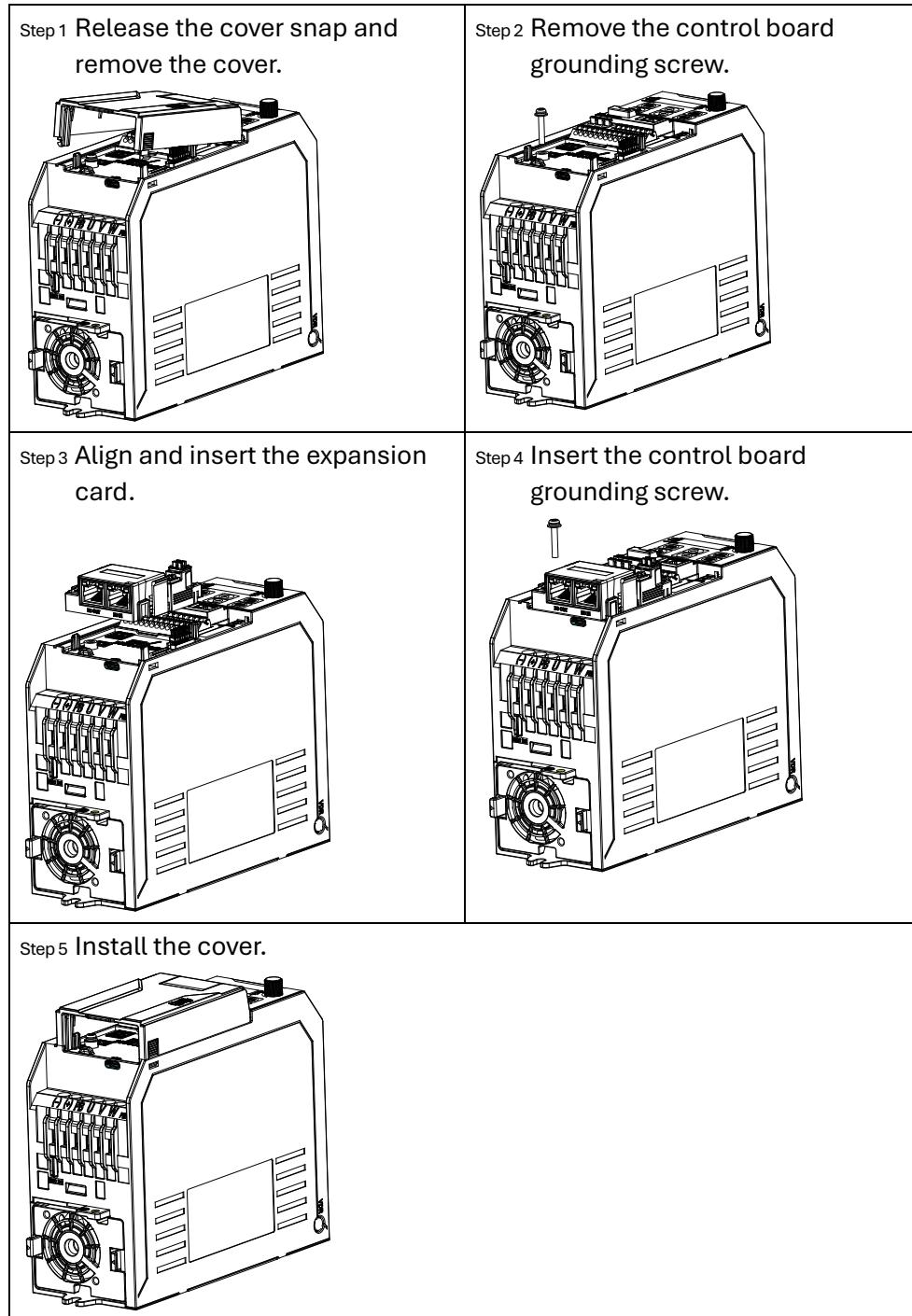
Indicator	Color	Definition	Function
RUN	Green	Steady off	In Init state.
		Blinking (on for 200ms, off for 200ms)	In PreOP state.
		Single flash (on for 200ms, off for 1s)	In SafeOP state.
		Steady on	In OP state.
IN(L/A IN)	Green	Steady on	IN Link established, without data transmission.
		Blinking (on for 50ms, off for 50ms)	IN Link established, with data transmission.
		Steady off	IN LINK not established.
OUT(L/A OUT)	Green	Steady on	OUT Link established, without data transmission.
		Blinking (on for 50ms, off for 50ms)	OUT Link established, with data transmission.
		Steady off	OUT LINK not established.
ERR	Red	Steady off	No fault
		Blinking (on for 200ms, off for 200ms)	The Init/Preop fault occurred.
		Single flash (on for 200ms, off for 1s)	The SafeOp fault occurred.

Indicator	Color	Definition	Function
		Steady on	The OP fault occurred.

Table A-7 EtherNet IP communication indicators

Indicator	Color	Definition	Function
RUN	Green	Steady on	Communication between the communication card and the PLC is online, and data exchange is allowed.
		Blinking (on for 500ms, off for 500ms)	Abnormal setting of the IP address for either the communication card or the PLC.
		Steady off	The communication between the communication card and PLC is not in Online state.
IN(HOST)	Green	Steady on	The communication card is in the process of handshaking with the inverter.
		Blinking (on for 500ms, off for 500ms)	The communication card and inverter communicate normally. Note: After the handshaking is completed, it should blink regardless of whether there is data transmission between the communication card and the main control board.
		Steady off	The communication card is in the initialization or parameter configuration phase.
OUT(DATA)	Green	Steady off	No data update or abnormal update between the communication card and main control board.
		Blinking (on for 500ms, off for 500ms)	The data update between the communication card and main control board is normal.
ERR	Red	Steady off	No fault
		Blinking (on for 500ms, off for 500ms)	Incorrect PLC configuration.
		Blinking (on for 250ms, off for 250ms)	The communication card failed to send data to the PLC.
		Blinking (on for 125ms, off for 125ms)	The connection between the communication card and PLC timed out.

Indicator	Color	Definition	Function
		Steady on	Failed to set up data communication between the communication card and PLC.


Table A-8 Modbus TCP communication indicators

Indicator	Color	Definition	Function
RUN	Green	Steady on	The communication between the communication card and the PLC is online, and data exchange is allowed.
		Blinking (on for 500ms, off for 500ms)	Abnormal setting of the IP address for either the communication card or the PLC.
		Steady off	The communication between the communication card and PLC is not in Online state.
IN(HOST)	Green	Steady on	The communication card is in the process of handshaking with the inverter.
		Blinking (on for 500ms, off for 500ms)	The communication card and inverter communicate normally. Note: After the handshaking is completed, it should blink regardless of whether there is data transmission between the communication card and the main control board.
		Steady off	The communication card is in the initialization or parameter configuration phase.
OUT(DATA)	Green	Steady off	No data update or abnormal update between the communication card and main control board.
		Blinking (on for 500ms, off for 500ms)	The data update between the communication card and main control board is normal.
ERR	Red	Steady on	Communication between the communication card and PLC is offline.
		Blinking (on for 500ms, off for 500ms)	An attempt to operate an unsupported CMD control word instruction or PR function code value.
		Blinking (on for 62.5ms, off for 62.5ms)	An attempt to operate on a non-existent node address.

Indicator	Color	Definition	Function
		Steady off	The communication between the communication card and PLC is normal.

A.5 Expansion card installation and wiring

A.5.1 Expansion card installation procedure

A.5.2 Expansion card wiring

Figure A-3 Product network port structure

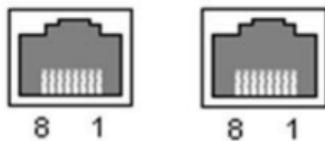


Table A-9 RJ45 network port functions

No.	Port	Description
1	TX+	Transmit Data+
2	TX -	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX -	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

The communication card uses standard RJ45 interfaces, and its electrical connections are shown in the following figures.

Note: It is recommended to use double-twisted shielded Category 5e Ethernet cables, with crystal heads equipped with iron shells to meet the grounding shield protection.

Figure A-4 Linear network topology electrical connection

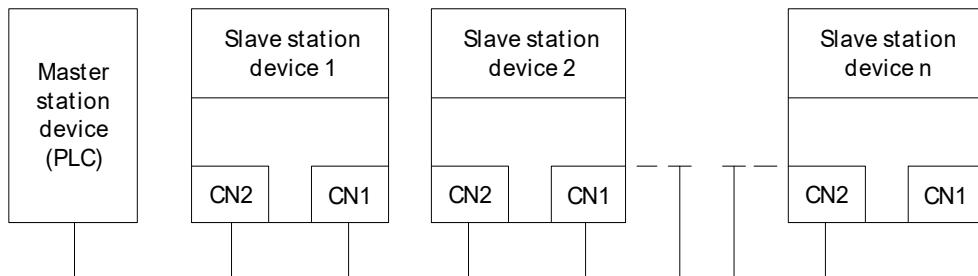
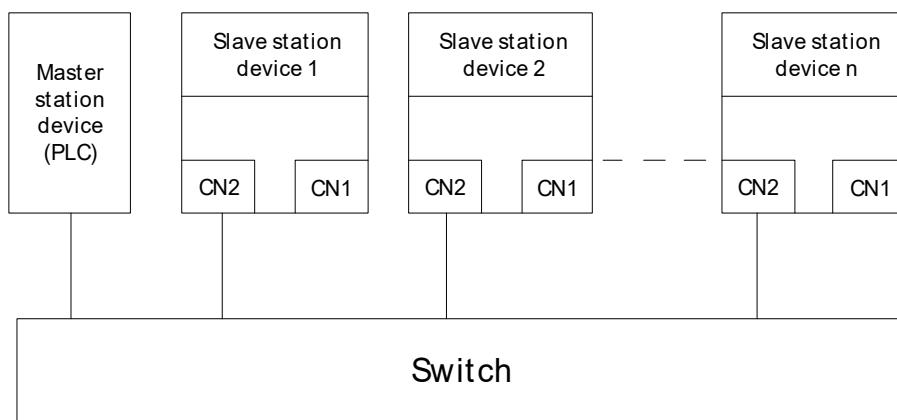
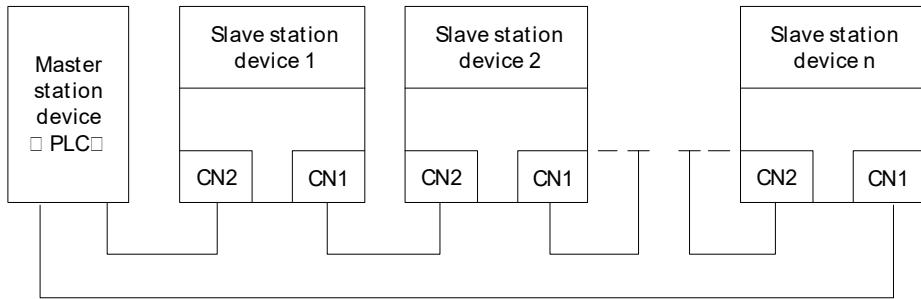




Figure A-5 Star network topology electrical connection

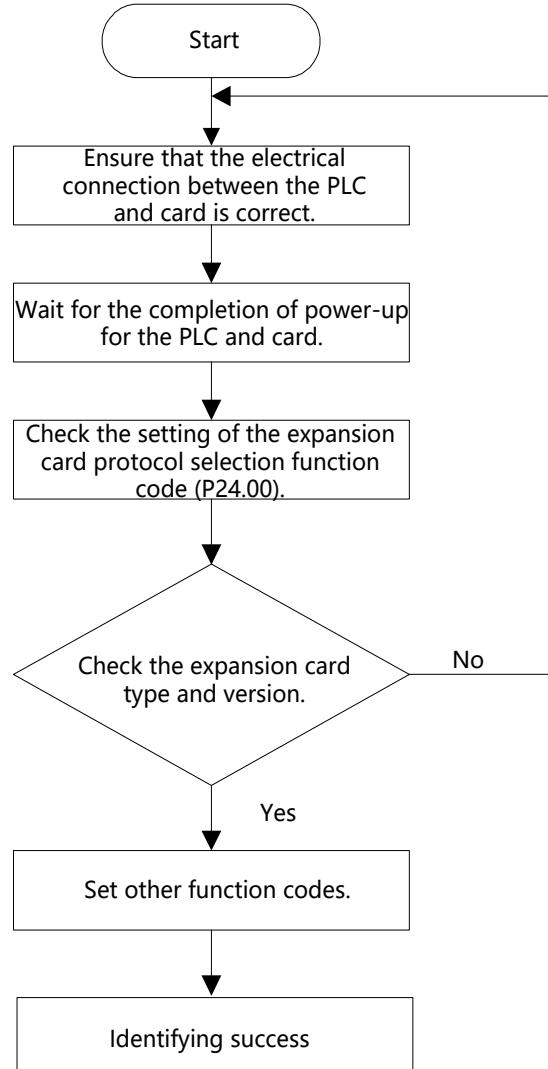

Note: For the star network topology, you need to prepare switches.

Figure A-6 Ring network topology electrical connection

A.6 Commissioning

Figure A-7 Expansion card commissioning flowchart

When 14.71 is 0 (defined in decimal), the inverter control word (CW) definitions are as follows:

Table A-10 Jaguar NXG series inverter CWs in decimal

Bit	Name	Value	Description
0-7	Communication-based control command	1	FWD run
		2	REV run
		3	Jog forward
		4	Jog reverse
		5	Stop
		6	Coast to stop
		7	Fault reset
		8	Stop jogging
		9	Stop in emergency manner
8	WRITE ENABLE	1	Enable read and write (PKW1–PKW4)
9-10	Motor group setting	00	MOTOR GROUP 1 SELECTION (Select motor 1)
		01	MOTOR GROUP 2 SELECTION (Select motor 2)
11	Control mode selection	1	Torque/Speed control selection enabling
		0	Do not select
12	ELECTRIC CONSUMPTION CLEAR	1	Enabling the function for resetting power consumption to zero
		0	Disabling the function for resetting power consumption to zero
13	PRE-EXCIATION	1	Enable pre-exciting
		0	Disable pre-exciting
14	DC BRAKE	1	Enabling DC braking
		0	Disabling DC braking
15	HEARTBEAT REF	1	Enable heartbeat
		0	Disable heartbeat

When P14.71 is 1 (defined in binary), the inverter control CW definitions are as follows:

Table A-11 Jaguar NXG series inverter CWs in binary

Bit	Name	Description	Priority
0	Forward running	0: Decelerate to stop 1: Run forward	1
1	Reverse running	0: Decelerate to stop	2

Bit	Name	Description	Priority
		1: Run reverse	
2	Fault reset	0: None 1: Fault reset	3
3	Coast to stop	0: None 1: Coast to stop	4
4	Forward jogging	0: None 1: Forward jogging	5
5	Reverse jogging	0: None 1: Reverse jogging	6
6	Stop jogging	0: None 1: Stop jogging	7
7	-	Reserved	-
8	Enable read and write (PKW1–PKW4)	0: None 1: Enable read and write	-
9	-	Reserved	-
10	Stop in emergency manner	0: None 1: Emergency stop	0 (Top priority)
11–15	Reserved	-	-

When P14.71 is 0 (defined in decimal), the inverter status word (SW) definitions are as follows:

Table A-12 Jaguar NXG series inverter SWs in decimal

Bit	Name	Value	Description
0–7	Running status	1	Running forward
		2	Running reverse
		3	Stopped
		4	In fault
		5	Inverter in POFF state
8	Bus voltage established	1	Ready to run
		0	Not ready to run
9–10	Motor group feedback	0	Feedback from motor 1
		1	Feedback from motor 2
11	Motor type feedback	1	Synchronous motor (SM)
		0	Asynchronous motor (AM)
12		1	Overload pre-alarm

Bit	Name	Value	Description
	Overload pre-alarm feedback	0	No overload pre-alarm
13-14	RUN/STOP MODE (Running mode selection)	0	Keypad-based control
		1	Terminal-based control
		2	Communication-based control
		3	Reserved
15	HEARTBEAT FEEDBACK (Heartbeat feedback)	1	Heartbeat feedback
		0	No heartbeat feedback

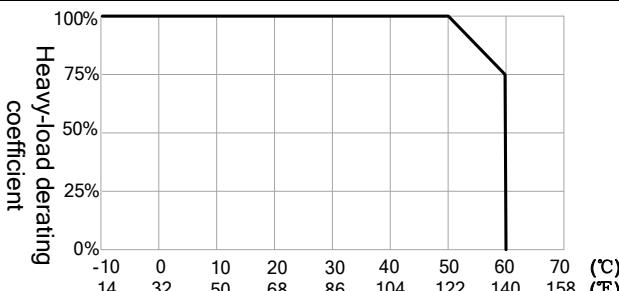
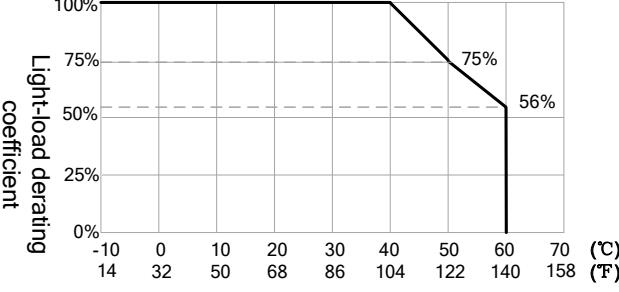
When P14.71 is 1 (defined in binary), the inverter SW definitions are as follows:

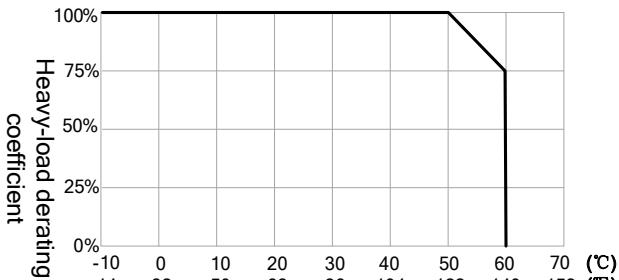
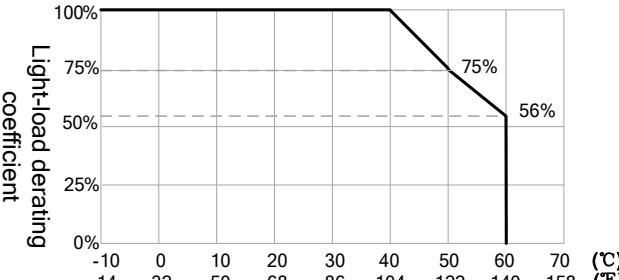
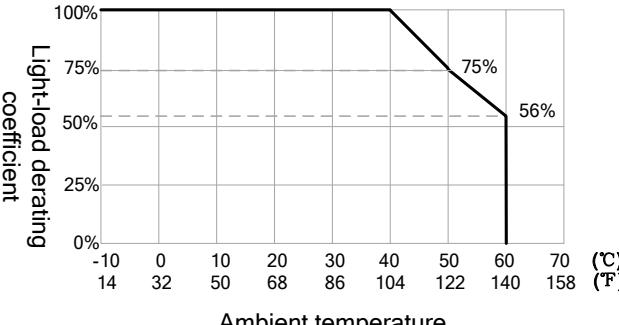
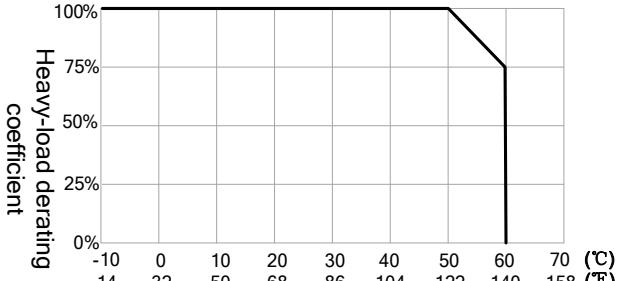
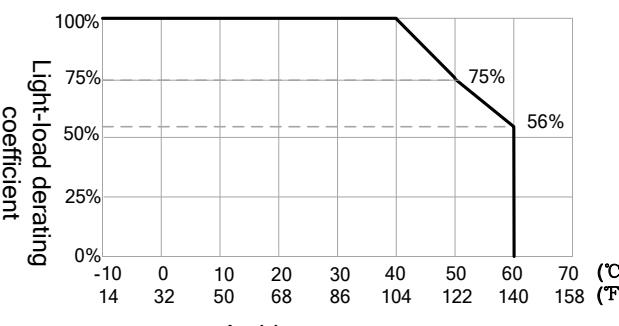
Table A-13 Jaguar NXG series inverter SWs in binary

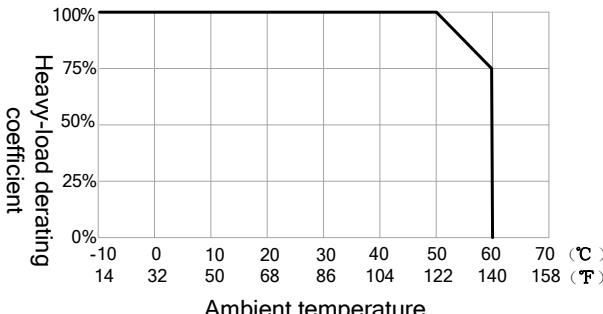
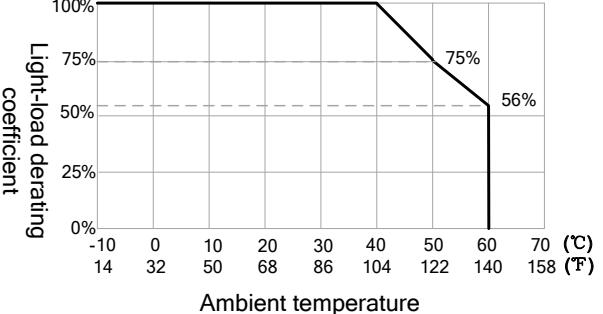
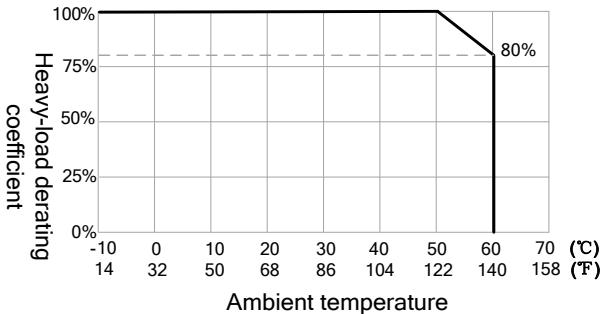
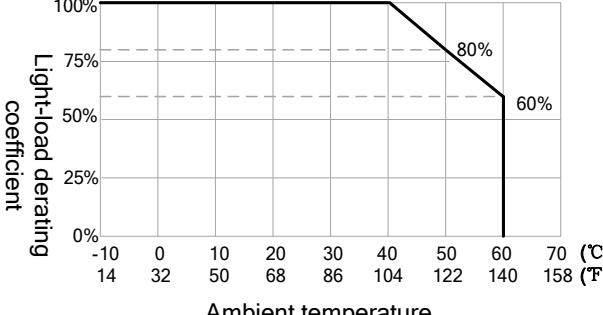
Bit	Name	Description	Priority
0	Forward running	0: None 1: Running forward	1
1	Reverse running	0: None 1: Running reverse	2
2	Stop	0: None 1: Stopped	3
3	Fault	0: None 1: Inverter in fault	4
4	POFF	0: None 1: Inverter in POFF state	5
5	Pre-exciting	0: None 1: Inverter in pre-exciting state	6
6-15	Reserved	-	-

Appendix B Technical Data

When one or more of the following conditions exist, the inverter must be derated to ensure safe and reliable operation:



- Ambient temperature at the installation site exceeds 50°C.
- Installation altitude exceeds 1000 m.
- A ventilation cover is used.
- The carrier frequency is higher than the factory-recommended value (see P00.14).






Note: If multiple derating factors apply simultaneously (e.g., high temperature and high altitude), their effects are cumulative, and the inverter must be derated accordingly.





B.1 Derating due to temperature

- The standard operating temperature range is -10°C to 50°C.
- For heavy duty conditions above 50°C or normal duty conditions above 40°C, the inverter's rated output current must be reduced according to the model-specific derating curve.

Table B-1 Derating due to ambient temperature

Product model	Frame	Relationship between derating factor and temperature
NXG-1.5A-21	A	
NXG-2.5A-21		
NXG-4.2A-21		
NXG-1.5A-23		
NXG-2.5A-23		
NXG-4.2A-23		
NXG-1.5A-43		
NXG-2.5A-43		
NXG-3A-43		
NXG-6.5A-21	B	
NXG-7.5A-21		
NXG-10A-21		
NXG-6.5A-23		
NXG-7.5A-23		
NXG-10A-23		
NXG-4.2A-43		

Product model	Frame	Relationship between derating factor and temperature
NXG-5.5A-43	C	<p>Heavy-load derating coefficient</p> <p>Ambient temperature</p>
NXG-7.5A-43		<p>Heavy-load derating coefficient</p> <p>Ambient temperature</p>
NXG-9.5A-43		<p>Light-load derating coefficient</p> <p>Ambient temperature</p>
NXG-16A-21		<p>Heavy-load derating coefficient</p> <p>Ambient temperature</p>
NXG-16A-23		<p>Light-load derating coefficient</p> <p>Ambient temperature</p>
NXG-20A-23		
NXG-14A-43		
NXG-18.5A-43		
NXG-30A-23	D	
NXG-42A-23		
NXG-25A-43		

Product model	Frame	Relationship between derating factor and temperature
NXG-32A-43	E	<p>Heavy-load derating coefficient</p> <p>Ambient temperature</p>
		<p>Light-load derating coefficient</p> <p>Ambient temperature</p>
		<p>Heavy-load derating coefficient</p> <p>Ambient temperature</p>
NXG-38A-43	E	<p>Light-load derating coefficient</p> <p>Ambient temperature</p>
NXG-45A-43		<p>Heavy-load derating coefficient</p> <p>Ambient temperature</p>

 Note: It is not recommended to use the inverter in an environment with temperatures higher than 60°C. If you do, you shall be held accountable for the consequences caused.

B.2 Derating due to altitude

When the inverter installation site altitude is lower than 1000m, the inverter can run at the rated power. When the altitude exceeds 1000m, derate by 1% for every increase of 100m. When the altitude exceeds 3000m, contact IMO.

B.3 Derating due to carrier frequency

The carrier frequency of the inverter varies with power class. The inverter rated power is defined based on the carrier frequency factory setting.

Model	Current coefficients at different carrier frequencies				
	4kHz	6kHz	8kHz	10kHz	12kHz
AC 1PH 200V-240V					
NXG-1.5A-21	1	1	1	0.9	0.85
NXG-2.5A-21	1	1	1	0.9	0.85
NXG-4.2A-21	1	1	1	0.9	0.85
NXG-6.5A-21	1	1	1	0.9	0.85
NXG-7.5A-21	1	1	1	0.9	0.85
NXG-10A-21	1	1	1	0.9	0.85
NXG-16A-21	1	1	1	0.9	0.85
AC 3PH 200V-240V					
NXG-1.5A-23	1	1	1	0.9	0.81
NXG-2.5A-23	1	1	1	0.91	0.84
NXG-4.2A-23	1	1	1	0.94	0.89
NXG-6.5A-23	1	1	1	0.95	0.91
NXG-7.5A-23	1	1	1	0.96	0.93
NXG-10A-23	1	1	1	0.98	0.96
NXG-16A-23	1	1	1	0.93	0.86
NXG-20A-23	1	1	1	0.93	0.87
NXG-30A-23	1	1	1	0.93	0.88
NXG-42A-23	1	1	1	0.91	0.84
AC 3PH 380V-480V					
NXG-1.5A-43	1	0.79	0.65	0.54	0.46
NXG-2.5A-43	1	0.81	0.68	0.58	0.50
NXG-3A-43	1	0.82	0.69	0.59	0.52
NXG-4.2A-43	1	0.85	0.73	0.64	0.57
NXG-5.5A-43	1	0.85	0.73	0.64	0.56
NXG-7.5A-43	1	0.87	0.76	0.67	0.60
NXG-9.5A-43	1	0.85	0.72	0.63	0.55
NXG-14A-43	1	0.87	0.77	0.68	0.61
NXG-18.5A-43	1	0.87	0.77	0.68	0.60
NXG-25A-43	1	0.87	0.77	0.68	0.61
NXG-32A-43	1	0.88	0.79	0.71	0.64
NXG-38A-43	1	0.87	0.77	0.68	0.61
NXG-45A-43	1	0.84	0.72	0.62	0.55

B.4 Grid specifications

Grid voltage	AC 1PH 200V(-15%)–240V(+10%) AC 3PH 200V(-15%)–240V(+10%) AC 3PH 380V(-15%)–480V(+10%)
Short-circuit current protection (UL 61800-5-1, CSA C22.2 No.274-13)	When the inverter uses the fuses listed in Table E2 Fuse model selection, the inverter unit is suitable for circuits with a maximum voltage of 480V and a symmetrical current not exceeding 65kA (rms).
Frequency	50/60Hz±5%, with a maximum change rate of 20%/s

B.5 Motor connection data

Motor type	Asynchronous induction motor or permanent-magnet synchronous motor
Voltage	0–U1 (motor rated voltage), 3PH symmetrical, Umax (Inverter rated voltage) at the field-weakening point
Short-circuit protection	The motor output short-circuit protection meets the requirements of IEC 61800-5-1.
Frequency	0–599Hz
Frequency resolution	0.01Hz
Current	See section 2.3 Product ratings.
Power limit	1.5 times the motor rated power
Field-weakening point	10–599Hz
Carrier frequency	4, 8, 12, or 15kHz

B.5.1 Motor cable length for normal operation

Motor cable lengths for normal operation are listed in the following table.

Model	Non-shielded cable	Shielded cable
NXG-1.5A-21	50m	25m
NXG-1.5A-23	50m	25m
NXG-2.5A-21	50m	25m
NXG-2.5A-23	100m	50m
NXG-1.5A-43	100m	50m
NXG-4.2A-21	100m	50m
NXG-4.2A-23	200m	150m
NXG-2.5A-43	200m	150m
NXG-3A-43	200m	150m
Frame B	200m	150m
Frame C, D, E	300m	200m

Note: When the motor cable is too long, electrical resonance may be caused due to the influence of distributed capacitance. This may cause motor insulation damage or generate large leakage current, causing device overcurrent protection. You must configure the AC output reactor nearby the inverter when the cable length is longer than the corresponding value in the preceding table.

B.5.2 Motor cable length for EMC

The standard models meet the EMC requirements of IEC/EN61800-3, and the maximum shielded motor cable lengths used at a 4kHz switching carrier frequency are as follows.

Frame	Max. motor cable length		
	Standard model (including built-in filter and EMC grounding screw)		External filter
	C2	C3	C2
AC 1PH 200V-240V			
A	5m	15m	50m
B	5m	15m	50m
C	5m	15m	50m
AC 3PH 200V-240V			
A	-	15m	50m
B	-	15m	20/50m ¹
C	-	15m	20/50m ²
D	-	15m	50m
E	-	15m	50m
AC 3PH 380V-480V			
A	-	15m	50m
B	-	15m	20/50m ¹
C	-	15m	20/50m ²
D	-	15m	50m
E	-	15m	50m

Note:

- ¹: For a frame-B 3PH model, with only an external input filter, it meets the C2 20m motor cable length requirement; when both input and output filters are added, it meets the C2 50m motor cable length requirement.
- ²: For a frame-C 3PH model, with an external input filter and a carrier frequency of 2kHz, it meets the C2 20m motor cable length requirement; with both input and output filters and a carrier frequency of 4kHz, it meets the C2 50m motor cable length requirement.
- For details about product frames, see section 2.5 Product dimensions and weight.

Appendix C Application Standards

C.1 List of application standards

The following table describes the application standards that inverters comply with.

EN/ISO 13849-1	Safety of machinery—Safety related parts of control systems—Part 1: General principles for design
EN/ISO 13849-2	Safety of machinery—Safety related parts of control systems—Part 2: Verification
IEC/EN 60204-1	Safety of machinery—Electrical equipment of machines. Part 1: General requirements
IEC/EN 62061	Safety of machinery—Safety-related functional safety of electrical, electronic, and programmable electronic control systems
IEC 61800-3	Adjustable speed electrical power drive systems—Part 3: EMC requirements and specific test methods
IEC/EN 61800-5-1	Adjustable speed electrical power drive systems—Part 5-1: Safety requirements—Electrical, thermal and energy
IEC/EN 61800-5-2	Adjustable speed electrical power drive systems—Part 5-2: Safety requirements—Function

C.2 CE/TUV/UL certification

The CE mark affixed to the inverter indicates that the inverter is CE-compliant, meeting the regulations of the European low-voltage directive (2014/35/EU) and EMC directive (2014/30/EU).

The TUV mark affixed to the inverter indicates that the inverter is TUV-compliant. TUV certification includes TUV-MARK, TUV-CE, TUV-CB, GS, and VDE certifications, which have high authority and recognition in the field of electronic appliances and components.

The UL mark affixed to the inverter indicates that the inverter has passed UL certification. UL certification is a voluntary certification in the United States (but mandatory in some states), and products that have passed the certification meet the relevant UL standard requirements can enter the US market.

Note: The nameplate of a product shows the actual certification result.

C.3 EMC compliance declaration

The inverter complies with the EMC product standards EN 61800-3:2004 + A1:2012; EN IEC 61800-3: 2018; EN IEC 61800-3: 2023, meeting the requirements for categories C2 and C3 (motor cable length limit for ensuring EMC compliance) as defined in the standard.

C.4 EMC product standard

The inverter is compliant with EN 61800-3:2004 + A1:2012; EN IEC 61800-3: 2018; EN IEC 61800-3: 2023.

Electromagnetic Compatibility (EMC) refers to the capability of a device or system to operate correctly within its electromagnetic environment without generating excessive electromagnetic interference (EMI) that could affect other equipment.

Application Environment Categories

First Environment:

- Refers to **civilian or residential environments**, including applications where the inverter is directly connected to a **low-voltage public power network** supplying residential buildings, without an intermediate transformer.
- **Note:** The inverter may produce **radio interference** in this environment. In addition to meeting **CE compliance requirements**, appropriate measures should be taken to **reduce interference** when necessary.

Second Environment:

- Refers to **non-residential environments**, including industrial and commercial locations **outside residential areas**.

Category	Description	Application Environment	Notes
C1	Inverters rated below 1000 V, suitable for the first environment.	First environment	Designed for residential use with low emission levels.
C2	Inverters rated below 1000 V, not plug-in or portable devices, must be installed and commissioned by qualified personnel when used in the first environment.	First environment	May generate some interference; mitigation measures may be required.
C3	Inverters rated below 1000 V, intended for the second environment.	Second environment	Not suitable for residential (first) environments due to higher EMI levels.
C4	Inverters with rated voltage above 1000 V or rated current ≥ 400 A, used in complex industrial systems within the second environment.	Second environment	Installation and commissioning must be performed by professionals with EMC expertise.

Note: The IEC/EN 61800-3 EMC standard no longer categorizes inverters by power level but rather by application type, installation method, and commissioning requirements. Qualified personnel with relevant EMC knowledge must perform installation and commissioning to ensure compliance and safe operation.

Appendix D Dimension Drawings

D.1 Keypad structure

Figure D-1 LED keypad structure (unit: mm)

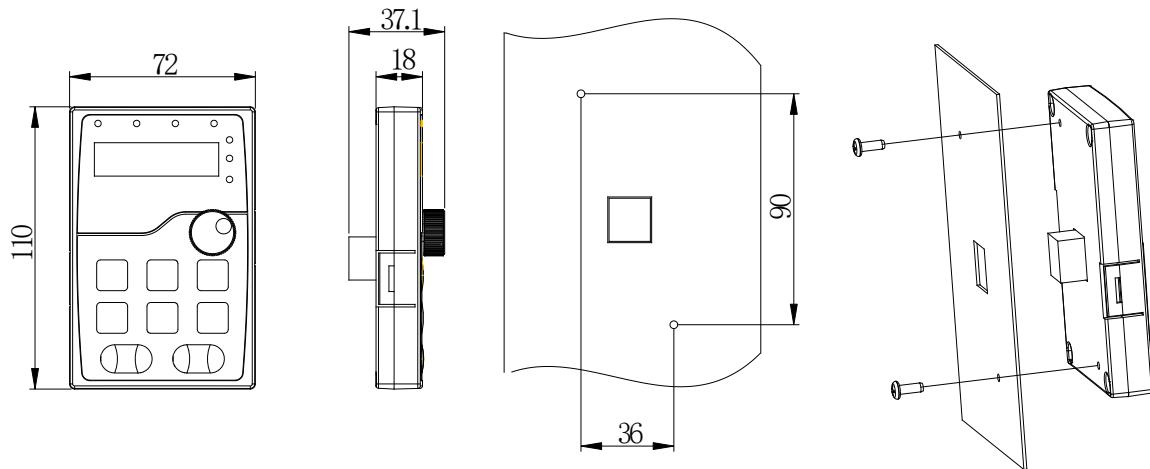
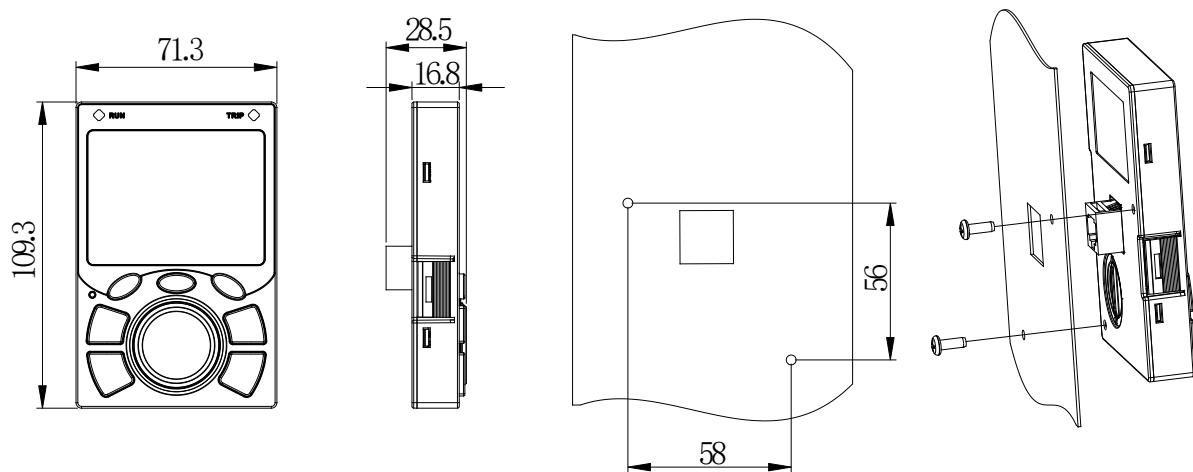



Figure D-2 LCD keypad structure (unit: mm)

D.2 Product outline dimensions

Figure D-3 Dimensions and hole positions for inverters in frames A and B

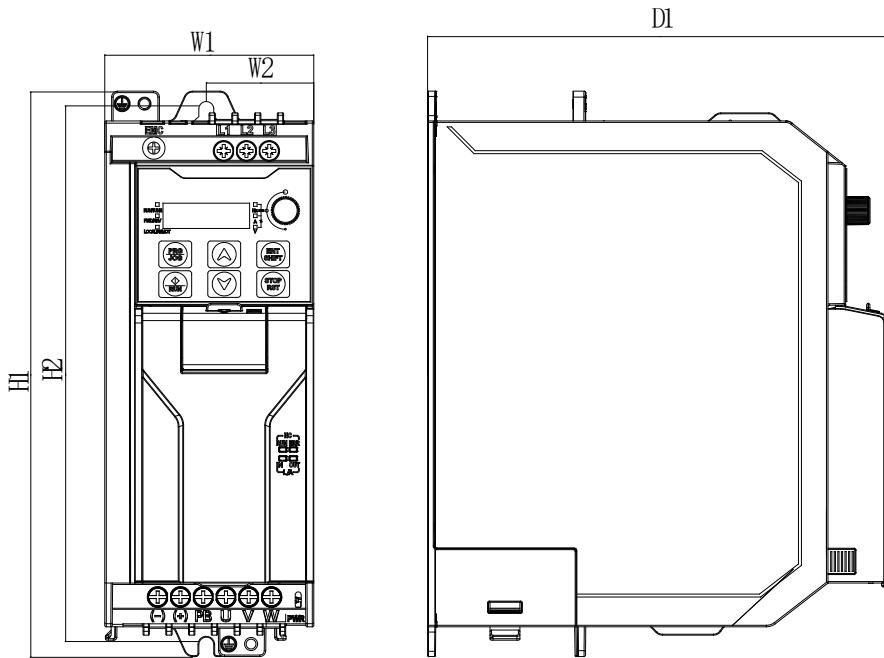


Table D-1 Dimensions and hole positions for inverters in frames A and B

Product model	Frame	Outline dimensions (mm)			Mounting hole distance (mm)		Mounting hole diameter (mm)
		W1	H1	D1	W2	H2	
NXG-1.5A-21	A	60	190	155	36	180	Ø5
NXG-2.5A-21		60	190	155	36	180	Ø5
NXG-4.2A-21		60	190	155	36	180	Ø5
NXG-1.5A-23		60	190	155	36	180	Ø5
NXG-2.5A-23		60	190	155	36	180	Ø5
NXG-4.2A-23		60	190	155	36	180	Ø5
NXG-1.5A-43		60	190	155	36	180	Ø5
NXG-2.5A-43		60	190	155	36	180	Ø5
NXG-3A-43		60	190	155	36	180	Ø5
NXG-6.5A-21	B	70	190	155	36	180	Ø5
NXG-7.5A-21		70	190	155	36	180	Ø5
NXG-10A-21		70	190	155	36	180	Ø5
NXG-6.5A-23		70	190	155	36	180	Ø5
NXG-7.5A-23		70	190	155	36	180	Ø5
NXG-10A-23		70	190	155	36	180	Ø5
NXG-4.2A-43		70	190	155	36	180	Ø5
NXG-5.5A-43		70	190	155	36	180	Ø5

Product model	Frame	Outline dimensions (mm)			Mounting hole distance (mm)		Mounting hole diameter (mm)
		W1	H1	D1	W2	H2	
NXG-7.5A-43		70	190	155	36	180	Ø5
NXG-9.5A-43		70	190	155	36	180	Ø5

Figure D-4 Dimensions and hole positions for inverters in frame C

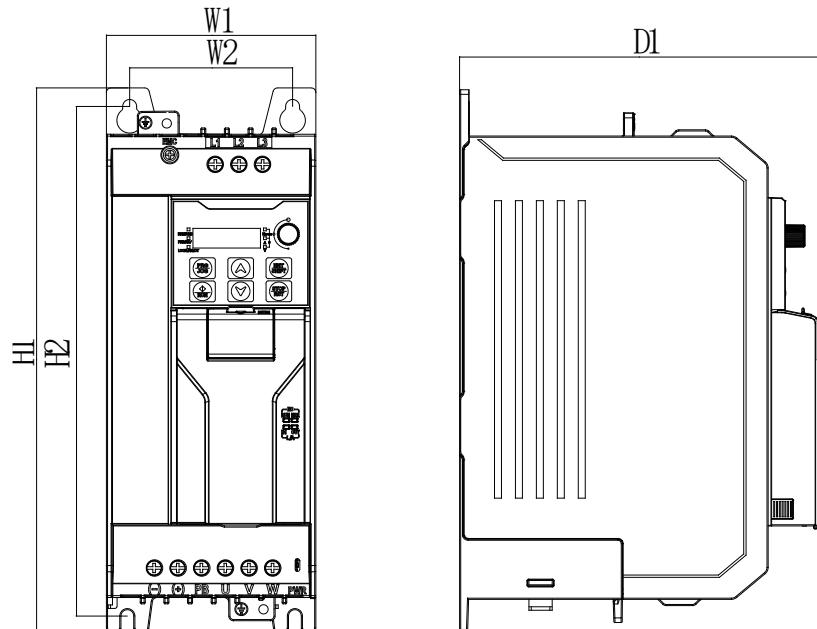


Table D-2 Dimensions and hole positions for inverters in frame C

Product model	Frame	Outline dimensions (mm)			Mounting hole distance (mm)		Mounting hole diameter (mm)
		W1	H1	D1	W2	H2	
NXG-16A-21	C	90	235	155	70	220	Ø6
NXG-16A-23		90	235	155	70	220	Ø6
NXG-20A-23		90	235	155	70	220	Ø6
NXG-14A-43		90	235	155	70	220	Ø6
NXG-18.5A-43		90	235	155	70	220	Ø6

Figure D-5 Dimensions and hole positions for inverters in frame D

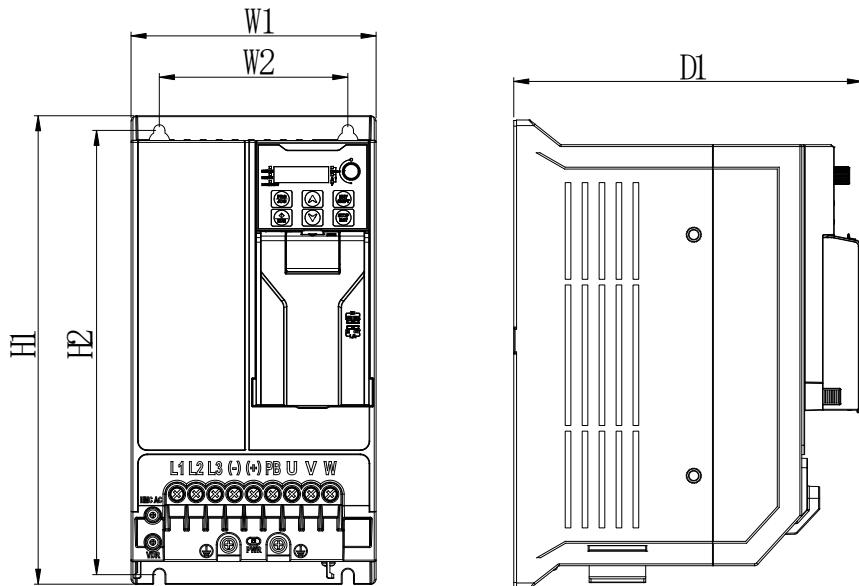


Table D-3 Dimensions and hole positions for inverters in frame D

Product model	Frame	Outline dimensions (mm)			Mounting hole distance (mm)	Mounting hole diameter (mm)
		W1	H1	D1		
NXG-30A-23	D	130	250	185	100	237
NXG-42A-23		130	250	185	100	237
NXG-25A-43		130	250	185	100	237
NXG-32A-43		130	250	185	100	237

Figure D-6 Dimensions and hole positions for inverters in frame E

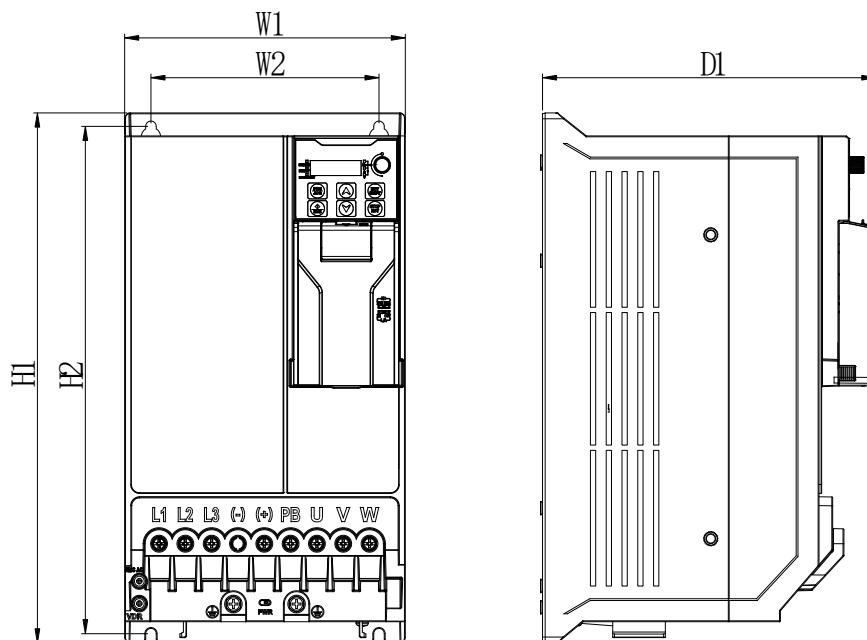
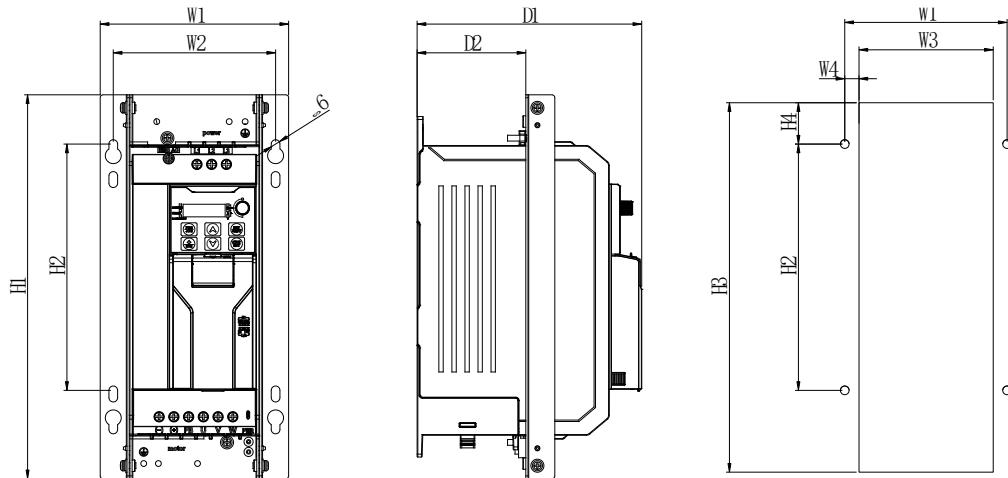



Table D-4 Dimensions and hole positions for inverters in frame E

Product model	Frame	Outline dimensions (mm)			Mounting hole distance (mm)		Mounting hole diameter (mm)
		W1	H1	D1	W2	H2	
NXG-55A-23	E	160	300	190	130	287	Ø 6
NXG-38A-43		160	300	190	130	287	Ø 6
NXG-45A-43		160	300	190	130	287	Ø 6

D.3 Flange mounting dimensions

Product model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Hole diameter	Screw
NXG-16A-21	130	112	93	10	265	170	255	29	155	75	Ø6	M5
NXG-16A-23	130	112	93	10	265	170	255	29	155	75	Ø6	M5
NXG-20A-23	130	112	93	10	265	170	255	29	155	75	Ø6	M5
NXG-14A-43	130	112	93	10	265	170	255	29	155	75	Ø6	M5
NXG-18.5A-43	130	112	93	10	265	170	255	29	155	75	Ø6	M5

Figure D-7 Dimensions and hole positions for inverters in frame D or E

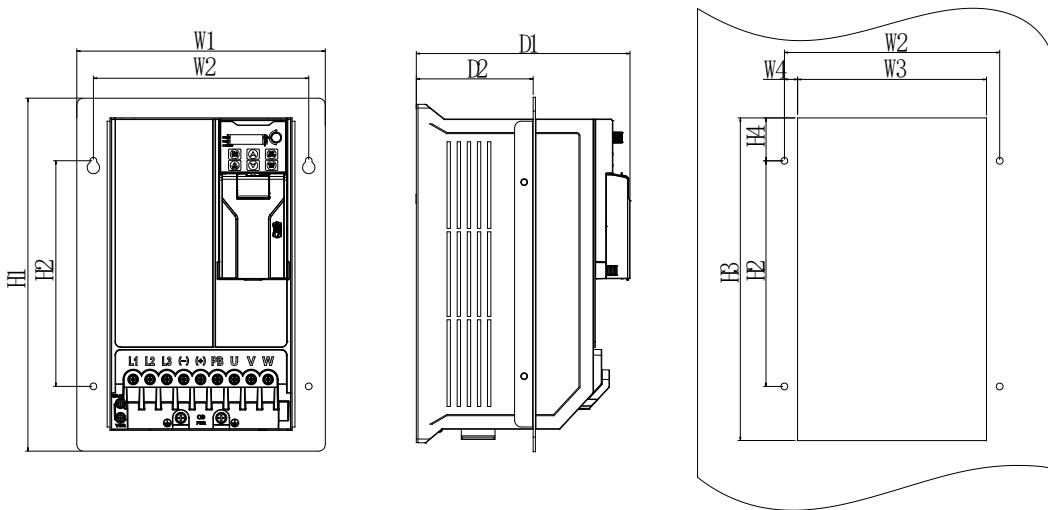


Table D-5 Flange mounting dimensions for inverters in frame D or E (unit: mm)

Product model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Hole diameter	Screw
NXG-30A-23	190	170	150	10	275	170	252	50	185	105	Ø6	M5
NXG-42A-23	190	170	150	10	275	170	252	50	185	105	Ø6	M5
NXG-25A-43	190	170	150	10	275	170	252	50	185	105	Ø6	M5
NXG-32A-43	190	170	150	10	275	170	252	50	185	105	Ø6	M5
NXG-55A-23	220	200	180	10	325	200	302	50	190	105	Ø6	M5
NXG-38A-43	220	200	180	10	325	200	302	50	190	105	Ø6	M5
NXG-45A-43	220	200	180	10	325	200	302	50	190	105	Ø6	M5

Appendix E Peripheral Accessories

E.1 Cable

Cables mainly include power cables and control cables. For the selection of cable types, see the following table.

Cable type		Symmetrical shielded cable	Four-core cable	Double-shielded twisted-pair cable	Single-shielded twisted-pair cable
Power cable	Input power cable	✓	-	-	-
	Motor cable	✓	-	-	-
Control cable	Analog signal control cable	-	-	✓	-
	Digital signal control cable	-	-	✓	✓

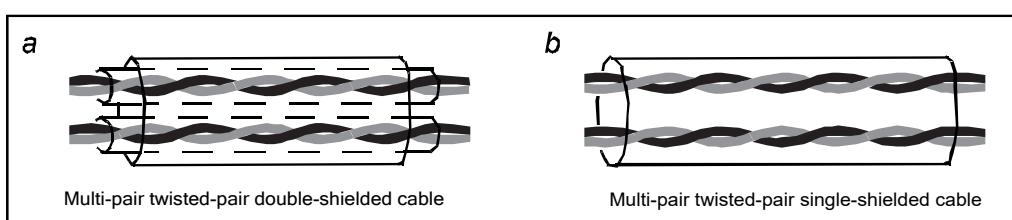
E.1.1 Power cable

Table E-1 Cable selection

Inverter model	Recommended Cable Size					
	L1/L, L2/N, L3, PB, (+), (-)		U, V, W		PE	
	mm ²	AWG	mm ²	AWG	mm ²	AWG
AC 1PH 200V–240V						
NXG-1.5A-21	1.5	14	1.5	14	1.5	14
NXG-2.5A-21	1.5	14	1.5	14	1.5	14
NXG-4.2A-21	1.5	14	1.5	14	1.5	14
NXG-6.5A-21	2.5	12	1.5	14	2.0	12
NXG-7.5A-21	4	10	1.5	14	4	10
NXG-10A-21	4	10	2.5	12	4	10
NXG-16A-21	10	8	2.5	12	10	8
AC 3PH 200V–240V						
NXG-1.5A-23	1.5	14	1.5	14	1.5	14
NXG-2.5A-23	1.5	14	1.5	14	1.5	14
NXG-4.2A-23	1.5	14	1.5	14	1.5	14
NXG-6.5A-23	1.5	14	1.5	14	1.5	14
NXG-7.5A-23	1.5	14	1.5	14	1.5	14
NXG-10A-23	2.5	12	2.5	12	2.5	12
NXG-16A-23	10	8	4	10	10	8

NXG-20A-23	10	8	10	8	10	8
NXG-30A-23	16	6	10	8	16	6
NXG-42A-23	16	6	16	6	16	6
NXG-55A-23	35	3	25	4	35	3

AC 3PH 380V–480V


NXG-1.5A-43	1.5	14	1.5	14	1.5	14
NXG-2.5A-43	1.5	14	1.5	14	1.5	14
NXG-3A-43	1.5	14	1.5	14	1.5	14
NXG-4.2A-43	1.5	14	1.5	14	1.5	14
NXG-5.5A-43	1.5	14	1.5	14	1.5	14
NXG-7.5A-43	2.5	12	1.5	14	2.0	12
NXG-9.5A-43	4	10	1.5	14	4	10
NXG-14A-43	10	8	4	10	10	8
NXG-18.5A-43	10	8	4	10	10	8
NXG-25A-43	16	6	10	8	16	6
NXG-32A-43	16	6	10	8	16	6
NXG-38A-43	25	4	16	6	25	4
NXG-45A-43	35	3	25	4	35	3

Note: The cables recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 50°C, the wiring distance is shorter than 100m, and the current is the rated current.

E.1.2 Control cable

Control cables mainly include analog signal control cables and digital signal control cables. Analog signal control cables use twisted double shielded cables (Figure a), with a separate shielded twisted pair for each signal and different ground wires for different analog signals. For digital signals, a double-shielded cable is preferred, but single-shielded or unshielded twisted pairs can also be used (Figure b).

Figure E-1 Control cable routing

Note:

- Independent shielded cables must be used as analog signal cables and communication cables.

- The same cable cannot transmit 24V DC signals and 115/230V AC signals simultaneously.
- For frequency signals, only shielded cables can be used.
- A relay cable needs to carry the metal braided shield layer.
- For control cable wiring terminals, refer to the GTVE wiring terminal description in the wire lug model selection section.

E.2 Breaker, fuse, and electromagnetic contactor

The circuit breaker is mainly used to prevent electric shock accidents and short circuits to the ground that may cause leakage current fire. The electromagnetic contactor is mainly used to control the main circuit power on and off, which can effectively cut off the input power of the inverter in case of system failure to ensure safety.

Table E-2 Model selection of breaker, fuse, and electromagnetic contactor

Inverter model	Braker (A)	Contactor rated current (A)
NXG-1.5A-21	6	9
NXG-2.5A-21	10	9
NXG-4.2A-21	16	12
NXG-6.5A-21	20	18
NXG-7.5A-21	25	25
NXG-10A-21	32	32
NXG-16A-21	40	38
NXG-1.5A-23	6	9
NXG-2.5A-23	6	9
NXG-4.2A-23	10	9
NXG-6.5A-23	16	12
NXG-7.5A-23	20	18
NXG-10A-23	25	25
NXG-16A-23	40	32
NXG-20A-23	50	40
NXG-30A-23	63	65
NXG-42A-23	80	65
NXG-55A-23	100	95
NXG-1.5A-43	6	9
NXG-2.5A-43	10	9
NXG-3A-43	10	9
NXG-4.2A-43	16	12
NXG-5.5A-43	16	12

Inverter model	Braker (A)	Contactor rated current (A)
NXG-7.5A-43	20	18
NXG-9.5A-43	20	18
NXG-14A-43	32	32
NXG-18.5A-43	40	32
NXG-25A-43	50	50
NXG-32A-43	63	65
NXG-38A-43	80	65
NXG-45A-43	100	95

 Note: To prevent overload, a fuse must be added.

Inverter model	Max short-circuit current	Fuse type	Fuse rating
NXG-1.5A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 6A, CLASS J
NXG-2.5A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 10A, CLASS J
NXG-4.2A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 15A, CLASS J
NXG-6.5A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 15A, CLASS J
NXG-7.5A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 20A, CLASS J
NXG-10A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 25A, CLASS J
NXG-16A-21	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 35A, CLASS J
NXG-1.5A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 5A, CLASS J
NXG-2.5A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 8A, CLASS J
NXG-4.2A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 10A, CLASS J
NXG-6.5A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 15A, CLASS J
NXG-7.5A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 15A, CLASS J
NXG-10A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 15A, CLASS J

Inverter model	Max short-circuit current	Fuse type	Fuse rating
NXG-16A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 30A, CLASS J
NXG-20A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 35A, CLASS J
NXG-30A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 60A, CLASS J
NXG-42A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 60A, CLASS J
NXG-55A-23	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 90A, CLASS J
NXG-1.5A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 5A, CLASS J
NXG-2.5A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 8A, CLASS J
NXG-3A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 8A, CLASS J
NXG-4.2A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 10A, CLASS J
NXG-5.5A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 12A, CLASS J
NXG-7.5A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 15A, CLASS J
NXG-9.5A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 20A, CLASS J
NXG-14A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 35A, CLASS J
NXG-18.5A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 35A, CLASS J
NXG-25A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 60A, CLASS J
NXG-32A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 60A, CLASS J
NXG-38A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 80A, CLASS J
NXG-45A-43	65kA	Non-semiconductor fuse (JDDZ/7)	600V, 90A, CLASS J

Note: The accessory specifications listed in the preceding table represent ideal values. Accessories may be selected according to actual site conditions; however, components with lower specifications than those indicated should be avoided whenever possible.

E.3 Optional Accessories

Reactors, braking components, and mounting brackets are external accessories and need to be specifically specified when purchasing.

E.3.1 Reactor

An input reactor is used to improve the power factor on the inverter input side and to limit high-order harmonic currents.

An output reactor is used to extend the effective motor cable transmission distance and suppress instantaneous high voltage generated during IGBT switching in the inverter.

Due to parasitic capacitance between long cables and ground, the leakage current may become excessive, causing the inverter's overcurrent protection to activate frequently. To prevent this condition and protect the motor insulation, compensation must be implemented by installing an output reactor. For the length of the cable between the inverter and the motor, see section B.5.1 Motor cable length for normal operation. If the length exceeds the limit, see the following table for selection; if the length exceeds twice the limit, consult us directly.

Table E-3 Reactor model selection

Inverter power	Input reactor	Output reactor
AC 1PH 200V-240V		
0.2kW	-	OCLC-6A-4
0.4kW	-	OCLC-6A-4
0.75kW	-	OCLC-6A-4
1.1kW	-	OCLC-10A-4
1.5kW	-	OCLC-10A-4
2.2kW	-	OCLC-14A-4
4kW	-	OCLC-20A-4
AC 3PH 200V-240V		
0.2kW	ACLC-6A-4	OCLC-6A-4
0.4kW	ACLC-6A-4	OCLC-6A-4
0.75kW	ACLC-14A-4	OCLC-6A-4
1.1kW	ACLC-14A-4	OCLC-10A-4
1.5kW	ACLC-14A-4	OCLC-10A-4
2.2kW	ACLC-14A-4	OCLC-20A-4
4kW	ACLC-25A-4	OCLC-20A-4
5.5kW	ACLC-32A-4	OCLC-32A-4
7.5kW	ACLC-40A-4	OCLC-40A-4
11kW	ACLC-51A-4	OCLC-50A-4
15kW	ACLC-90A-4	OCLC-75A-4
AC 3PH 380V-480V		

Inverter power	Input reactor	Output reactor
0.4kW	ACLC-6A-4	OCLC-6A-4
0.75kW	ACLC-6A-4	OCLC-6A-4
1.1kW	ACLC-6A-4	OCLC-6A-4
1.5kW	ACLC-14A-4	OCLC-6A-4
2.2kW	ACLC-14A-4	OCLC-10A-4
3kW	ACLC-14A-4	OCLC-10A-4
4kW	ACLC-20A-4	OCLC-14A-4
5.5kW	ACLC-32A-4	OCLC-20A-4
7.5kW	ACLC-32A-4	OCLC-20A-4
11kW	ACLC-51A-4	OCLC-35A-4
15kW	ACLC-51A-4	OCLC-40A-4
18kW	ACLC-70A-4	OCLC-50A-4
22kW	ACLC-70A-4	OCLC-60A-4

Note:

- The rated input voltage drop of input reactor is designed to $\geq 1.5\%$.
- The rated output voltage drop of output reactor is designed to 1%.

E.3.2 Braking component

The braking component consists of braking resistors and braking units, which function to dissipate the regenerative energy produced by the motor. These components significantly enhance the braking and deceleration performance of the system.

When the inverter operates with a high-inertia load and decelerates, or when a rapid deceleration is required, the motor enters a power generation state. In this state, the kinetic energy of the load is fed back to the DC circuit of the inverter, resulting in a rise in the inverter's DC bus voltage.

If the bus voltage exceeds the specified threshold, the inverter issues an overvoltage fault. To prevent this condition, appropriate braking components must be configured within the drive system.

Table E-4 Braking component model selection

Inverter power	Braking unit	Resistance applicable for 100% braking torque (Ω)	Braking resistor dissipation power (kW) (10% braking ratio)	Braking resistor dissipation power (kW) (50% braking ratio)	Braking resistor dissipation power (kW) (80% braking ratio)	Min. allowed braking resistance (Ω)
AC 1PH 200V-240V						

Inverter power	Braking unit	Resistance applicable for 100% braking torque (Ω)	Braking resistor dissipation power (kW) (10% braking ratio)	Braking resistor dissipation power (kW) (50% braking ratio)	Braking resistor dissipation power (kW) (80% braking ratio)	Min. allowed braking resistance (Ω)
0.2kW	Built-in braking unit	750	0.03	0.15	0.24	380
0.4kW		361	0.06	0.3	0.48	180
0.75kW		192	0.11	0.56	0.9	100
1.1kW		131	0.17	0.83	1.32	100
1.5kW		96	0.23	1.1	1.8	60
2.2kW		65	0.33	1.7	2.64	39
4kW		36	0.6	3	4.8	33
AC 3PH 200V–240V						
0.2kW	Built-in braking unit	750	0.03	0.15	0.24	380
0.4kW		361	0.06	0.3	0.48	180
0.75kW		192	0.11	0.56	0.9	100
1.1kW		131	0.17	0.83	1.32	100
1.5kW		96	0.23	1.1	1.8	60
2.2kW		65	0.33	1.7	2.64	39
4kW		36	0.6	3	4.8	33
5.5kW		26	0.8	4.13	6.6	25
7.5kW		19	1.13	5.63	9	13
11 kW		13	1.65	8.3	13.2	8.8
15kW		9.6	2.3	11.3	18	6.4
AC 3PH 380V–480V						
0.4kW	Built-in braking unit	750	0.08	0.4	0.7	380
0.75kW		653	0.11	0.56	0.9	200
1.1kW		440	0.16	0.8	1.3	150
1.5kW		326	0.23	1.13	1.8	150
2.2kW		222	0.33	1.65	2.64	130
3kW		122	0.6	3	4.8	80
4kW		122	0.6	3	4.8	80
5.5kW		89	0.8	4.1	6.6	60
7.5kW		65	1.13	5.6	9	51

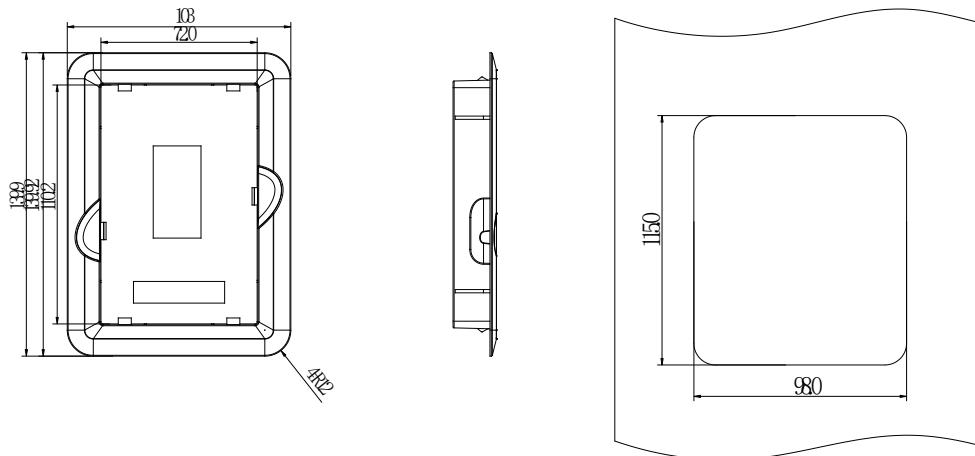
Inverter power	Braking unit	Resistance applicable for 100% braking torque (Ω)	Braking resistor dissipation power (kW) (10% braking ratio)	Braking resistor dissipation power (kW) (50% braking ratio)	Braking resistor dissipation power (kW) (80% braking ratio)	Min. allowed braking resistance (Ω)
11kW		44	1.7	8.3	13.2	31
15kW		32	2	11.2	18	23
18.5kW		26	3	14	22	19
22kW		22	3.3	17	26	17

Note:

- Select braking resistors according to the resistance and power data provided by IMO.
- The braking resistor may increase the braking torque of the inverter. The preceding table describes the resistance and power for 100% braking torque, 10% braking ratio, 50% braking ratio and 80% braking ratio. The braking system should be selected based on the actual operating conditions of the equipment.

E.3.3 External keypad and mounting bracket

E.3.3.1 External keypad

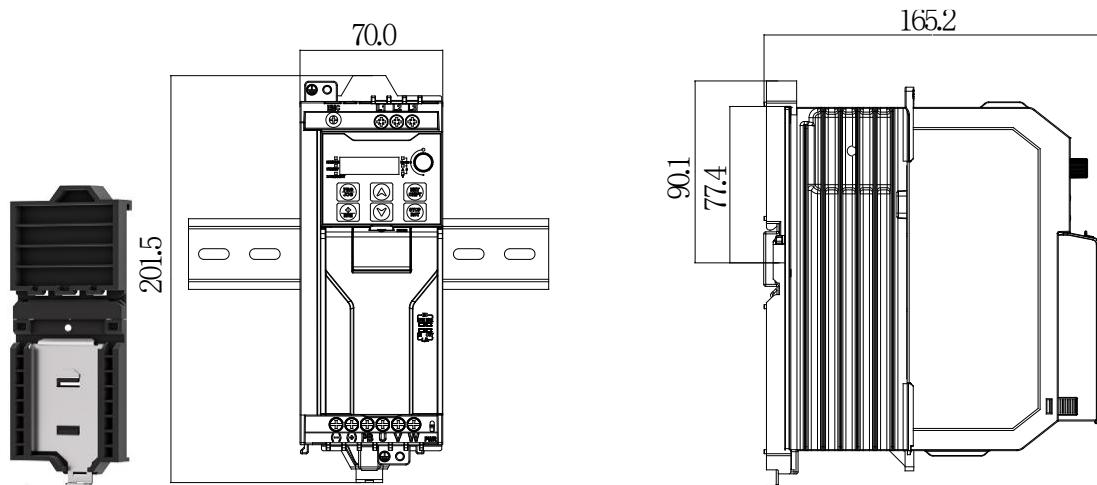

Ordering code (with package)	NXG-KP-LCD	NXG-KP-LED
Appearance		

E.3.3.2 Keypad mounting bracket

All models support external keypads that are optional.

The external keypad can be mounted on a bracket. Two types of brackets are available and are compatible with all keypad models. The keypad mounting brackets are optional accessories. Figure E 5 shows the outline dimensions.

Figure E-2 Keypad mounting bracket dimensions (unit: mm)



Name	Model
Keypad mounting bracket	NXG-KP-MB

E.3.4 DIN rail mounting bracket

When selecting the DIN rail mounting method for the inverters in frames A and B, you must select rail mounting brackets.

Figure E-3 DIN rail mounting bracket dimensions (unit: mm)

Name	Model
DIN rail mounting bracket	NXG-DRB-1

E.3.5 Accessory list

No.	Name	Model	Applicable frame	Appearance
1	Flange mounting bracket-C	NXG-MF-3	C	
2	Flange mounting bracket-D	NXG-MF-4	D	
3	Flange mounting bracket-E	NXG-MF-5	E	

Appendix F STO Function

Before starting the STO function, read the following content in detail and follow all safety precautions in this manual.

F.1 Safety standards

The product has been integrated with the STO function and complies with the following safety standards.

IEC 61000-6-7	Electromagnetic compatibility (EMC)—Part 7: General standards—Immunity requirements for equipment used in industrial sites to perform safety related functions (functional safety)
IEC 61326-3-1	EMC requirements for measurement, control, and laboratory electrical equipment—Part 31: Immunity requirements for safety related systems and equipment intended to perform safety related functions (functional safety)—General industrial applications
IEC 61508	Safety of machinery—Functional safety of safety-related control systems
IEC/EN 61800-5-2	Adjustable speed electrical power drive systems Part 5-2: Safety requirements—Function
IEC/EN 62061	Safety of machinery—Safety-related functional safety of electrical, electronic, and programmable electronic control systems
EN/ISO 13849-1	Safety of machinery—Safety related parts of control systems—Part 1: General principles for design
EN/ISO 13849-2	Safety of machinery—Safety related parts of control systems—Part 2: Verification

Safety standard related data is as follows.

Code	Definition	Standard	Characteristics
SIL	Safety integrity level	IEC 61508 IEC 62061	SIL3
PFH	Probability of failure per hour	IEC 61508	8.53×10^{-10}
HFT	Hardware fault tolerance	IEC 61508	1
SFF	Safe failure fraction	IEC 61508	99.39%
DC	Diagnosis coverage	ISO 13849-1	Greater than 90%
Cat.	Category	ISO 13849-1	3

F.2 Safety function description

- **STO function principle**

The Safe Torque Off (STO) function disables the inverter output by shutting down the drive signal, cutting off electrical power to the motor, and thereby stopping torque generation (see Figure F-2). When STO is activated, the function prevents the motor from unintended starting while stationary. If the motor is rotating, it will coast to a stop by inertia. If equipped with a brake, the brake engages immediately.

** Note:**

- In normal operation, do not use the STO function to stop the inverter. STO cannot prevent intentional misuse or sabotage. When STO is used during inverter operation, power to the motor is cut, and the motor coasts to a stop. If this behavior is unsafe for your application, use standard stop modes instead.
- For permanent magnet, reluctance, or non-salient pole induction motors, even with STO activated, there exists a low-probability failure mode that may allow limited torque output. The resulting shaft rotation may reach:
 - 180° electrical angle for permanent magnet motors
 - 90° electrical angle for non-salient pole or reluctance motors

This limited rotation must be considered in system design:

$$\text{Max. mechanical rotation angle} = 360^\circ / \text{Number of pole pairs}$$

- STO cannot replace the emergency stop function. Additional power isolation measures are required for emergency stop conditions.
- STO has priority over all inverter functions.
- While STO reduces risks, it does not eliminate all hazards.
- The design of safety-related systems requires professional safety engineering knowledge. The STO function alone cannot ensure overall system safety.

Emergency stop function description

The emergency stop function enables operators to take immediate action to prevent accidents during abnormal conditions. It allows for a rapid and controlled stop, typically achieved through mechanical switches or relays that cut off the power supply or apply dynamic/regenerative braking.

F.3 Risk assessment

- Conduct a risk assessment before using the STO function to verify compliance with relevant safety standards.
- Consider secondary risks that may arise during STO operation.
- When external forces (e.g., vertical load due to gravity) are present, the motor may move even during STO. Install a mechanical brake for safety.
- In the event of drive failure, if the motor rotation is limited within 180° electrical angle, safety remains ensured.

Note: The max. rotation angle of the rotating motor's shaft is 1/6 of a full turn, while the max. rotation angle of the driven motor's shaft is 1/20 of a full turn. The max. travel distance of the linear servo motor is 30mm.

F.4 STO wiring

In factory configuration, terminals +24V, STO1, and STO2 are shorted.

The wiring requirements are as follows:

1. When enabling the STO function, remove the jumpers between +24V, STO1, and STO2.
2. During normal operation, close switches or relays to maintain continuity.

Figure F-1 +24V/STO1/STO2 shorting connection

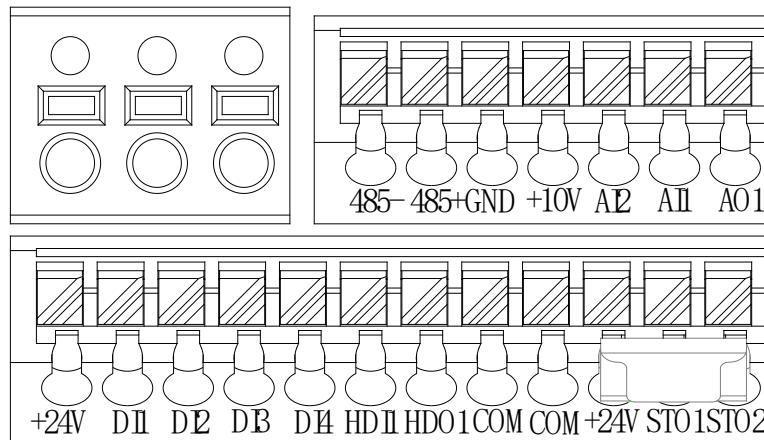


Figure F-2 STO function circuit internal power wiring

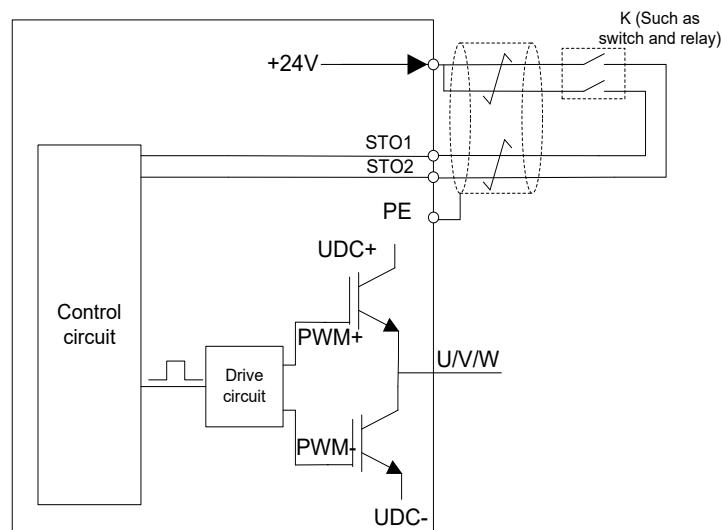
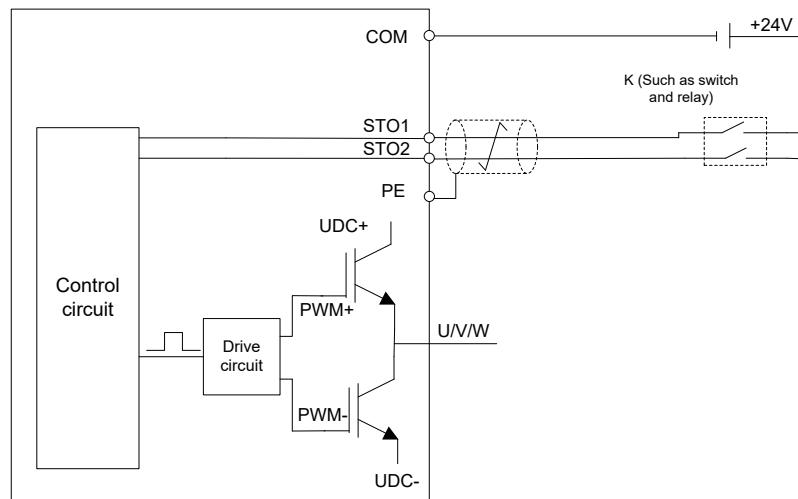



Figure F-3 STO function circuit external power wiring

Note:

- Symbol “K” may represent a manual switch, emergency stop, safety relay, or safety PLC contact.
- Opening/closing of safety switch contact must occur within 200 ms.
- Maximum cable length (double-shielded twisted pair): 25 m.
- Cable shield must be connected to the PE terminal.
- When STO is enabled, the switch or relay is opened. The inverter stops output, and the keypad displays E40.

F.5 STO function terminal description

STO function terminals are listed in the following table.

Terminal symbol	Function
+24V	Voltage range: 24V±15% To disable the STO function, short +24V/STO1/STO2.
STO1	Voltage in STO action mode: 0V < STO1 and STO2 < 5V
STO2	Voltage in STO cut-off mode: 13V < STO1 and STO2 < 30V Input current: 5mA STO function channel signal input

- **Note:** E43 indicates both STO1 and STO2 are abnormal.

F.6 STO function logic table

The function logics of STO1 and STO2 and keypad display are listed in the following table.

STO1	STO2	Inverter status	Keypad display	Fault description
STO1 closed	STO2 closed	Normal running	No exception displayed	-
STO1 open	STO2 open	Torque output off	E40	Safe torque off (STO)
STO1 open	STO2 closed	Torque output off	E41	STO1 exception
STO1 closed	STO2 open	Torque output off	E42	STO2 exception

Note: E43 indicates both STO1 and STO2 are abnormal.

F.7 STO channel delay description

The following table describes the trigger and indication delay of the STO channels.

Table F-1 lists the STO channel trigger and indication delay

STO mode	STO trigger delay ¹ and STO indication delay ²
STO fault: E41	Trigger delay < 10ms Indication delay < 280ms
STO fault: E42	Trigger delay < 10ms Indication delay < 280ms
STO fault: E43	Trigger delay < 10ms Indication delay < 280ms
STO fault: E40	Trigger delay < 10ms Indication delay < 100ms

STO trigger delay¹: Time interval between triggering the STO function and switching off the drive output

STO instruction delay²: Time interval between triggering the STO function and indicating STO output status

F.8 Acceptance test

Warning	
	<ul style="list-style-type: none"> Only qualified personnel trained in safety system design may perform STO testing. Do not perform maintenance before isolating inverter power. Risk of electric shock or stored charge hazard. The STO acceptance test must be conducted by certified personnel and signed off by the responsible test engineer.

The acceptance test must be carried out for the device in the following stages:

1. Initial startup of safety functions
2. After any safety function related change (including PCB, wiring, component, or setup)
3. After any safety function related maintenance work

All acceptance test reports must be documented and filed in system logs, including test records, fault references, and resolutions.

- **Acceptance test checklist**

Step	Test	Result
1	Verify inverter can run/stop normally during commissioning.	<input type="checkbox"/>
2	Stop inverter, disconnect input power, isolate via switch.	<input type="checkbox"/>
3	Verify STO circuit connections per wiring diagram.	<input type="checkbox"/>
4	Close the isolation switch to connect to the power. Test STO operation (motor stopped): Disconnect STO → inverter enters STO mode (E40). Attempt restart → motor does not start. Reconnect STO → clear fault and verify normal operation.	<input type="checkbox"/>
5	Test STO operation (motor running): Disconnect STO → inverter enters STO mode (E40), motor coasts to stop. Reconnect STO → clear fault, verify restart.	<input type="checkbox"/>
6	Simulate individual channel faults: Disconnect STO1 → E41; Disconnect STO2 → E42. Verify response and reset by power cycling.	<input type="checkbox"/>
6	Record and sign acceptance test report confirming STO function integrity.	<input type="checkbox"/>

 Note:

- If all steps pass without exception, the STO circuit is functioning correctly.
- If the keypad displays E43, inspect wiring and components (refer to section 8.2 Faults and Solutions).
- Fault E40 can be manually or automatically reset via parameter P08.55

Inverter fault	Fault code displayed	Response time	Reset method
Normal running	No exception displayed	-	-
Torque output off	E40	≤20ms	Press STOP/RST.
Torque output off	E41	≤20ms	Entire machine re-powered on
Torque output off	E42	≤20ms	Entire machine re-powered on

Appendix G Function Parameter List

The function parameters of the inverter are divided into groups by function. Each group includes several function codes (each function code identifies a function parameter). A three-level menu style is applied to function codes. For example, "P08.08" indicates the 8th function code in group P08. Inverter supports the password protection function. For detail settings, see P07.00. The parameters adopt the decimal system (0–9) and hexadecimal system (0–F). If the hexadecimal system is adopted, all bits are mutually independent on data during parameter editing. The symbols in the table are described as follows:

"○" indicates that the value of the parameter can be modified when the inverter is in stopped or running state.

"◎" indicates that the value of the parameter cannot be modified when the inverter is in running state.

"●" indicates that the value of the parameter is read only. (When "Restore factory settings" are performed, the actual detected parameter values or recorded values will not be restored.)

G.1 Group P00—Basic functions

Function code	Name	Description	Default	Modify
P00.00	Speed control mode	<p>Specifies a speed control mode.</p> <p>Setting range: 0–2</p> <p>0: SVC mode 0</p> <p>1: SVC mode 1</p> <p>2: V/F mode</p> <p>Note: Before operating the inverter in vector control mode (0 or 1), perform motor parameter autotuning to ensure accurate motor control and optimal performance.</p>	2	◎
P00.01	Channel of running commands	<p>Specifies a channel of running commands.</p> <p>Setting range: 0–2</p> <p>0: Keypad</p> <p>1: Terminal</p> <p>2: Communication</p>	0	○
P00.02	Communication mode of running commands	<p>The function code is used to select a communication mode of running commands.</p> <p>Setting range: 0–6</p> <p>0: Modbus/Modbus TCP communication</p> <p>1: Reserved</p>	0	○

Function code	Name	Description	Default	Modify
		<p>2: Ethernet 3: EtherCAT/PROFINET/EtherNet IP 4–6: Reserved</p> <p>Note: The Modbus TCP communication mode of option 0, and options 2 and 3 are extended functions, which are valid only when corresponding expansion cards are configured.</p>		
P00.03	Max. output frequency	<p>Specifies the max. output frequency of the inverter, which is the basis of the frequency setting and the acceleration (ACC) and deceleration (DEC) time.</p> <p>Setting range: P00.04–599.00Hz</p>	50.00	◎
P00.04	Upper limit of running frequency	<p>Sets the upper limit of inverter output frequency. Should be ≤ max output frequency.</p> <p>Setting range: P00.05–P00.03 (Hz)</p>	50.00	◎
P00.05	Lower limit of running frequency	<p>Sets the lower limit of inverter output frequency. If set frequency < lower limit, lower limit is used.</p> <p>Setting range: 0.00Hz–P00.04</p> <p>Note: Max. output frequency ≥ Upper limit ≥ Lower limit</p>	0.00	◎
P00.06	Setting channel of A frequency command	<p>Specifies the frequency command source.</p> <p>Setting range: 0–15</p>	0	○
P00.07	Setting channel of B frequency command	<p>0: P00.10 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6: Reserved 7: Simple PLC program 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 11: Reserved</p>	1	○

Function code	Name	Description	Default	Modify
		12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved		
P00.08	Reference object of B frequency command	Specifies the reference object of B frequency command. Setting range: 0–1 0: Max. output frequency 1: A frequency command	0	<input type="radio"/>
P00.09	Combination mode of setting source	Specifies the combination mode of A/B frequency setting source. Setting range: 0–5 0: A 1: B 2: (A+B) 3: (A- B) 4: Max(A, B) 5: Min. (A, B)	0	<input type="radio"/>
P00.10	Setting frequency through keypad	Specifies the initial inverter frequency set value when A and B frequency commands are set by keypad. Setting range: 0.00Hz–P00.03	50.00	<input type="radio"/>
P00.11	Acceleration time 1	Specifies the acceleration time of ramp frequency. Setting range: 0.0–3600.0s	Model dependent	<input type="radio"/>
P00.12	Deceleration time 1	Specifies the deceleration time of ramp frequency. Setting range: 0.0–3600.0s	Model dependent	<input type="radio"/>
P00.13	Running direction	Specifies the running direction. Setting range: 0–2 0: Run at the default direction. 1: Run at the opposite direction. 2: Disable reverse running.	0	<input type="radio"/>
P00.14	Carrier frequency setting	Specifies inverter carrier frequency. High carrier frequency → better current waveform, less harmonic, but more switch loss, higher temperature, possible derating.	Model dependent	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Low carrier frequency → unstable low-speed operation, reduced torque, possible oscillation. Default factory settings: 8kHz for 220V ≤ 5.5kW, 4kHz for other models. Setting range: 1.0kHz–15.0kHz Note: Each 1kHz increase above default requires 10% derating.		
P00.15	Motor parameter autotuning	Specifies the motor autotuning function. Setting range: 0–3 0: No operation 1: Complete parameter rotary autotuning 2: Complete parameter static autotuning 3: Partial parameter static autotuning	0	◎
P00.16	AVR function	Specifies the inverter automatic voltage regulation (AVR) function, which can eliminate the impact of the bus voltage fluctuation on the inverter output voltage. Setting range: 0–1 0: Invalid 1: Valid during the whole process	1	○
P00.17	Inverter type	Specifies the inverter type. Setting range: 0–3 0–1: Reserved 2: Heavy duty 3: Light duty Note: Invalid when the value is 0 or 1.	2	◎
P00.18	Function parameter reset	Specifies the factory reset function. Setting range: 0–6 0: No operation 1: Restore default values (excluding motor parameters) 2: Clear fault records 3: Lock all function codes	0	◎

Function code	Name	Description	Default	Modify
		<p>4: Reserved</p> <p>5: Restore to default values (factory test mode)</p> <p>6: Restore default values (including motor parameters)</p> <p>Note: User password is deleted during restore. After operation, the function code automatically resets to 0. Locking (3) prevents modification of any function code.</p>		

G.2 Group P01—Start and stop control

Function code	Name	Description	Default	Modify
P01.00	Running mode of start	<p>Specifies the start mode.</p> <p>Setting range: 0–4</p> <p>0: Direct start</p> <p>1: Start after DC braking</p> <p>2–3: Reserved</p> <p>4: Start after speed tracking (software)</p>	0	◎
P01.01	Starting frequency of direct start	<p>Specifies the initial frequency during inverter start.</p> <p>Setting range: 0.00Hz–P00.03</p>	0.50	◎
P01.02	Starting frequency hold time	<p>Specifies the hold time of starting frequency.</p> <p>Setting range: 0.0–50.0s</p>	0.0s	◎
P01.03	Braking current before start	<p>Specifies the DC braking current before startup.</p> <p>Setting range: 0.0–100.0%</p>	0.0	◎
P01.04	Braking time before start	<p>Specifies the DC braking time before startup.</p> <p>Setting range: 0.00–50.00s</p>	0.00	◎
P01.05	Acceleration/deceleration mode	<p>Specifies the changing mode of the frequency during start and running.</p> <p>Setting range: 0–1</p> <p>0: Linear type. The output frequency increases or decreases linearly.</p>	0	◎

Function code	Name	Description	Default	Modify
		1: S curve. The output frequency increases or decreases according to the S curve. Note: The S curve is generally applied to application scenarios where smoother start or stop is required. When the S curve mode is selected, P01.06, P01.07, P01.27, and P01.28 need to be set accordingly.		
P01.06	Time of starting segment of acceleration S curve	Specifies the time of the starting segment of the acceleration S curve. It works with P01.07 to determine the curvature of the S curve. Setting range: 0.0–50.0s	0.1	◎
P01.07	Time of ending segment of acceleration S curve	Specifies the time of the ending segment of the acceleration S curve. It works with P01.06 to determine the curvature of the S curve. Setting range: 0.0–50.0s	0.1	◎
P01.08	Stop mode	Specifies the stop mode. Setting range: 0–1 0: Decelerate to stop. After a stop command, the inverter reduces output frequency according to the deceleration mode and deceleration time. Once the frequency reaches the stop speed (P01.15), the inverter stops. 1: Coast to stop. After a stop command, the inverter output ceases immediately, and the load stops according to mechanical inertia.	0	○
P01.09	Starting frequency of braking for stop	Specifies the starting frequency of DC braking for stop. Setting range: 0.00Hz–P00.03	0.00	○
P01.10	Demagnetization time	Specifies the demagnetization time, that is, the wait time before DC braking for stop.	0.00	○

Function code	Name	Description	Default	Modify
		Setting range: 0.00–30.00s		
P01.11	DC braking current for stop	Specifies the DC braking current for stop, that is, the DC braking energy. Setting range: 0.0–100.0% (of the rated inverter output current)	0.0	○
P01.12	DC braking time for stop	Specifies the duration of DC braking. Setting range: 0.00–50.00s Note: If the value is 0, DC braking is invalid, and the inverter decelerates to stop within the specified time.	0.00	○
P01.13	FWD/REV run dead zone time	Specifies the transition time of the switching in FWD/REV running switching mode specified by P01.14. Setting range: 0.0–3600.0s	0.0	○
P01.14	FWD/REV run switching mode	Specifies the forward/reverse running switching mode. Setting range: 0–2 0: Switch at zero frequency 1: Switch at the starting frequency 2: Switch after the speed reaches the stop speed with a delay	1	◎
P01.15	Stop speed	Specifies the stop speed (frequency). Setting range: 0.00Hz–P00.03	0.50	◎
P01.16	Stop speed detection mode	Specifies the stop speed detection mode. The inverter stops when the value in the selected mode is less than P01.15. Setting range: 0–1 0: Detect according to speed setting 1: Detect according to speed feedback Note: Only "Detect according to speed setting" is valid in V/F control mode.	1	◎
P01.17	Stop speed detection time	Specifies the stop speed detection time.	0.00	◎

Function code	Name	Description	Default	Modify
		Setting range: 0.00–100.00s		
P01.18	Terminal-based running command protection at power-on	<p>Specifies whether the terminal running command is valid at power-on.</p> <p>Setting range: 0–1</p> <p>0: The terminal running command is invalid at power-on.</p> <p>1: The terminal running command is valid at power-on.</p>	0	○
P01.19	Action selected when running frequency less than frequency lower limit	<p>Specifies the run status of the inverter when the set frequency is below the lower limit.</p> <p>Setting range: 0x00–0x12</p> <p>Ones place: Action selection</p> <p>0: Run at the frequency lower limit</p> <p>1: Stop</p> <p>2: Sleep</p> <p>Tens place: Stop mode</p> <p>0: Coast to stop</p> <p>1: Decelerate to stop</p> <p>Note: Valid only when frequency lower limit is greater than 0.</p>	0x00	◎
P01.20	Wake-up-from-sleep delay	<p>Specifies the wake-up-from-sleep delay time.</p> <p>Setting range: 0.0–3600.0s</p> <p>Note: Valid only when P01.19 ones place is 2.</p>	0.0	○
P01.21	Power-off restart selection	<p>Specifies whether the inverter automatically runs after re-power on.</p> <p>Setting range: 0–1</p> <p>0: Disable</p> <p>1: Enable. If the restart condition is met, the inverter will run automatically after waiting the time defined by P01.22.</p>	0	○
P01.22	Wait time for restart after power-off	<p>Specifies the wait time before the automatic running of the inverter that is re-powered on.</p> <p>Setting range: 0.0–3600.0s</p>	1.0	○

Function code	Name	Description	Default	Modify
		Note: Valid only when P01.19 ones place is 2. Valid when P01.21 is 1.		
P01.23	Start delay time	Setting range: 0.0–600.0s	0.0	○
P01.24	Stop speed delay	Setting range: 0.0–600.0s	0.0	○
P01.25	Open-loop 0Hz output selection	Setting range: 0–2 0: Output without voltage 1: Output with voltage 2: Output with the DC braking current for stop	0	○
P01.26	Deceleration time for emergency stop	Setting range: 0.0–60.0s	2.0	○
P01.27	Time of starting segment of deceleration S curve	Setting range: 0.0–50.0s	0.1	◎
P01.28	Time of ending segment of deceleration S curve	Setting range: 0.0–50.0s	0.1	◎
P01.29–P01.31	Reserved	-	-	-
P01.32	Pre-exciting time for jogging	Setting range: 0.000–10.000s	0.300	○
P01.33	Starting frequency of braking for stop in jogging	Setting range: 0.00Hz–P00.03	0.00	○
P01.34	Sleep delay	Setting range: 0–3600.0s	0.0	○
P01.35	Speed tracking method	Setting range: 0x000–0x112 Ones place: Speed tracking method selection 0: Track according to stop frequency 1: Track according to rated frequency 2: Track according to max. frequency Tens place: Tracking direction 0: Single (set) direction	0x000	○

Function code	Name	Description	Default	Modify
		1: Dual (forward and reverse) directions Hundreds place: Tracking current limit (sending no wave when the value exceeded) 0: 20% (relative to the larger of inverter current and motor current) 1: 10% (relative to the larger of inverter current and motor current)		
P01.36	Quick/slow selection for speed tracking	Setting range: 0–10000	300	○
P01.37	Speed tracking voltage coefficient	Setting range: 0–50	10	○

G.3 Group P02—Parameters of motor 1

Function code	Name	Description	Default	Modify
P02.00	Type of motor 1	Setting range: 0–1 0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor	0	○
P02.01	Rated power of AM 1	Setting range: 0.1–3000.0kW	Model dependent	○
P02.02	Rated frequency of AM 1	Setting range: 0.01Hz–P00.03	50.00	○
P02.03	Rated speed of AM 1	Setting range: 1–60000RPM	Model dependent	○
P02.04	Rated voltage of AM 1	Setting range: 0–1200V	Model dependent	○
P02.05	Rated current of AM 1	Setting range: 0.08–600.00A	Model dependent	○
P02.06	Stator resistance of AM 1	Setting range: 0.001–65.535Ω	Model dependent	○
P02.07	Rotor resistance of AM 1	Setting range: 0.001–65.535Ω	Model dependent	○
P02.08	Leakage inductance of AM 1	Setting range: 0.1–6553.5mH	Model dependent	○

Function code	Name	Description	Default	Modify
P02.09	Mutual inductance of AM 1	Setting range: 0.1–6553.5mH	Model dependent	<input type="radio"/>
P02.10	No-load current of AM 1	Setting range: 0.01–655.35A	Model dependent	<input type="radio"/>
P02.11	Magnetic saturation coefficient 1 of iron core of AM 1	Setting range: 0.0–100.0%	80.0	<input type="radio"/>
P02.12	Magnetic saturation coefficient 2 of iron core of AM 1	Setting range: 0.0–100.0%	68.0	<input type="radio"/>
P02.13	Magnetic saturation coefficient 3 of iron core of AM 1	Setting range: 0.0–100.0%	57.0	<input type="radio"/>
P02.14	Magnetic saturation coefficient 4 of iron core of AM 1	Setting range: 0.0–100.0%	40.0	<input type="radio"/>
P02.15	Rated power of SM 1	Setting range: 0.1–3000.0kW	Model dependent	<input type="radio"/>
P02.16	Rated frequency of SM 1	Setting range: 0.01Hz–P00.03	50.00	<input type="radio"/>
P02.17	Number of pole pairs of SM 1	Setting range: 1–128	2	<input type="radio"/>
P02.18	Rated voltage of SM 1	Setting range: 0–1200V	Model dependent	<input type="radio"/>
P02.19	Rated current of SM 1	Setting range: 0.08–600.00A	Model dependent	<input type="radio"/>
P02.20	Stator resistance of SM 1	Setting range: 0.001–65.535Ω	Model dependent	<input type="radio"/>
P02.21	Direct-axis inductance of SM 1	Setting range: 0.01–655.35mH	Model dependent	<input type="radio"/>
P02.22	Quadrature-axis inductance of SM 1	Setting range: 0.01–655.35mH	Model dependent	<input type="radio"/>
P02.23	Counter-emf constant of SM 1	Setting range: 0–10000	300	<input type="radio"/>

Function code	Name	Description	Default	Modify
P02.24	Initial pole position of SM 1	Setting range: 0x0000–0xFFFF	0x0000	●
P02.25	Frequency percentage for SM 1 counter-emf identifying	Setting range: 5.0–100.0%	60.0	◎
P02.26	Overload protection selection of motor 1	Setting range: 0–2 0: No protection. 1: Common motor (with low-speed compensation). For common motors, cooling is reduced at low speeds. Low-speed compensation lowers the overload protection threshold for frequencies below 30 Hz. 2: Frequency-variable motor (without low-speed compensation). Cooling is independent of rotation speed; no adjustment of protection is needed at low speeds.	2	◎
P02.27	Overload protection coefficient of motor 1	Used to set the motor overload protection coefficient P. The P value determines the motor overload capability: a lower P value reduces the overload capability, while a higher P value increases the overload capability. The motor overload multiple M and the overload protection coefficient P determine the motor overload protection behavior: <ul style="list-style-type: none">• M = 116% *P → protection after 1 hour of overload• M = 150% *P → protection after 12 minutes• M = 180% *P → protection after 5 minutes• M = 200% *P → protection after 60 seconds	100.0	○

Function code	Name	Description	Default	Modify
		<ul style="list-style-type: none"> $M \geq 400\% * P \rightarrow$ protection is immediate <p>Setting range: 20.0%–150.0%</p>		
P02.28	Power display calibration coefficient of motor 1	Used to adjust the power display value of motor 1. However, it does not affect the control performance of the inverter. Setting range: 0.00–3.00	1.00	○
P02.29	Parameter display selection of motor 1	Setting range: 0–1 0: Display by motor type. In this mode, only parameters related to the present motor type are displayed. 1: Display all. In this mode, all the motor parameters are displayed.	0	○
P02.30	System inertia of motor 1	Setting range: 0.001–65.535 kg·m ²	0.001	○
P02.31	Parameter model calculation of motor 1	Setting range: 0–1 0: Disable 1: Enable	0	◎
P02.32	Power factor of AM 1	Setting range: 0.00–1.00	0.85	○
P02.33	High word of rated speed of AM 1	Setting range: 0–30 (10kRPM)	0	◎
P02.34	Iron core saturation coefficient 1 of AM 1	Setting range: 0.0–200.0%	125.0	○
P02.35	Iron core saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	125.0	○
P02.36	Mutual inductance saturation coefficient 1 of AM 2	Setting range: 0.0–200.0%	88.0	○
P02.37	Mutual inductance saturation	Setting range: 0.0–200.0%	88.0	○

Function code	Name	Description	Default	Modify
	coefficient 2 of AM 2			
P02.38	Mutual inductance flux weakening coefficient 1 of AM 1	Setting range: 0.0–200.0%	112.5	<input type="radio"/>
P02.39	Mutual inductance flux weakening coefficient 2 of AM 1	Setting range: 0.0–200.0%	117.6	<input type="radio"/>
P02.40	Mutual inductance flux weakening coefficient 3 of AM 1	Setting range: 0.0–200.0%	122.8	<input type="radio"/>
P02.41	Mutual inductance flux weakening coefficient 4 of AM 1	Setting range: 0.0–200.0%	125.0	<input type="radio"/>

G.4 Group P03—Vector control of motor 1

Function code	Name	Description	Default	Modify
P03.00	Speed-loop proportional gain 1 of motor 1	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	<input type="radio"/>
P03.01	Speed-loop integral time 1 of motor 1	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200	<input type="radio"/>
P03.02	Motor 1 switching low-point frequency	Setting range: 0.00Hz–P03.05 Note: Applicable only to vector control mode.	5.00	<input type="radio"/>
P03.03	Speed-loop proportional gain 2 of motor 1	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	<input type="radio"/>
P03.04	Speed-loop integral time 2 of motor 1	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200	<input type="radio"/>
P03.05	Switching high-point frequency of motor 1	Setting range: P03.02–P00.03(Hz) Note: Applicable only to vector control mode.	10.00	<input type="radio"/>

Function code	Name	Description	Default	Modify
P03.06	Speed-loop output filter of motor 1	Setting range: 0–8 (corresponding to 0–2°/10ms)	0	○
P03.07	Electromotive slip compensation coefficient of vector control for motor 1	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100	○
P03.08	Braking slip compensation coefficient of vector control for motor 1	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100	○
P03.11	Torque setting method selection of motor 1	Setting range: 0–15 0: P03.12 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.	0	○
P03.12	Torque set through keypad of motor 1	Setting range: -300.0%–300.0% Note: The value is relative to the motor rated current.	20.0	○

Function code	Name	Description	Default	Modify
P03.13	Torque reference filter time of motor 1	Setting range: 0.000–10.000s	0.010	<input type="radio"/>
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	Setting range: 0–15 0: Set by P03.16 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.	0	<input type="radio"/>
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	Setting range: 0–15 0: Set by P03.17 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.		
P03.16	Forward rotation upper-limit frequency in torque control for motor 1	Specifies the frequency limit when P03.14=0. Setting range: 0.00Hz–P00.03	50.00	<input type="radio"/>
P03.17	Reverse rotation upper-limit frequency in torque control for motor 1	The function code is used to set the frequency limit when P03.15=0. Setting range: 0.00Hz–P00.03	50.00	<input type="radio"/>
P03.18	Setting source of electromotive torque upper limit for motor 1	Setting range: 0–15 0: Set by P03.20 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.	0	<input type="radio"/>
P03.19	Setting source of braking torque upper limit for motor 1	Setting range: 0–15 0: Set by P03.21 1: AI1 2: AI2 3: AI3	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.		
P03.20	Electromotive torque upper limit set through keypad for motor 1	Specifies the torque limit when P03.18 = 0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0	<input type="radio"/>
P03.21	Braking torque upper limit set through keypad for motor 1	Specifies the torque limit when P03.19 = 0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0	<input type="radio"/>
P03.22	Weakening coefficient in constant power zone for motor 1	Used when the AM is in flux-weakening control. Setting range: 0.0–200.0%	100.0	<input type="radio"/>
P03.23	Lowest weakening point in constant power zone for motor 1	Setting range: 5%–100%	5	<input type="radio"/>
P03.24	Max. voltage limit on motor 1	Specifies the max. inverter output voltage, which is a percentage of the motor rated voltage. Set the value according to onsite conditions. Setting range: 0.0–120.0%	100.0	<input type="radio"/>
P03.25	Pre-exciting time of motor 1	Specifies the pre-exciting time. Pre-exciting is performed for the motor when the inverter starts up. A magnetic field is built up inside the	0.300	<input type="radio"/>

Function code	Name	Description	Default	Modify
		<p>motor to improve the torque performance during the start process.</p> <p>Setting range: 0.000–10.000s</p> <p>Note: Pre-excitation can improve the start-up capability of AM with loads. For an AM, set 0 to disable the pre-excitation process. For an SM, if P13.01 is set to an enabling option, the pre-excitation process is directly skipped.</p>		
P03.26	Flux-weakening proportional gain of motor 1	Setting range: 0–8000	1000	<input type="radio"/>
P03.27	Speed display selection in vector control for motor 1	Setting range: 0–1 0: Display the actual value 1: Display the set value	0	<input type="radio"/>
P03.28	Static friction compensation coefficient of motor 1	Setting range: 0.0–100.0%	0.0	<input type="radio"/>
P03.29	Static friction corresponding frequency point of motor 1	Setting range: 0.50Hz–P03.31	1.00	<input type="radio"/>
P03.30	High speed friction compensation coefficient of motor 1	Setting range: 0.0–100.0%	0.0	<input type="radio"/>
P03.31	High speed friction corresponding frequency point of motor 1	Setting range: P03.29–P00.03(Hz)	50.00	<input type="radio"/>
P03.32	Enabling torque control of motor 1	Setting range: 0–1 0: Disable 1: Enable	0	<input type="radio"/>
P03.33	Flux-weakening integral gain of motor 1	Setting range: 0.0–300.0%	30.0	<input type="radio"/>
P03.35	Control mode optimization	Setting range: 0x0000–0x1111	0x0000	<input type="radio"/>

Function code	Name	Description	Default	Modify
	selection of motor 1	Ones place: Torque command selection 0: Torque current reference 1: Torque current reference Tens place: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved		
P03.36	Speed-loop differential gain of motor 1	Setting range: 0.00–10.00s	0.00	○
P03.43	Motor 1 inertia identification torque	0.0–100.0%	10.0	○
P03.44	Enabling motor 1 inertia identification	0–1 0: Disable 1: Enable	0	○
P03.45	Max. flux weakening current of SM 1	Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated current.	100.0	○
P03.46	Vector control optimization parameter of motor 1	Setting range: 0x0000–0x1FFF Bit 0–Bit 2: Reserved Bit 3: Enable closed-loop disturbance feedforward compensation Bit 4: Axis-q voltage restriction selection 0: Restricted to 1.2 times the motor rated voltage 1: Restricted to axis-d voltage Bit 5: Mutual inductance self-adaptation enabling 0: Invalid 1: Enable Bit 6: Direct-axis inductance (Ld) saturation enabling 0: Invalid	0x0037	○

Function code	Name	Description	Default	Modify
		<p>1: Enable (suitable for synchronous reluctance motors or synchronous motors where inductance varies significantly with current) Bit 7: Quadrature-axis inductance (Lq) saturation enabling 0: Invalid</p> <p>1: Enable (suitable for synchronous reluctance motors or synchronous motors where inductance varies significantly with current) Bit 8: Torque control current optimization enabling 0: Invalid</p> <p>1: Enable (suitable for low torque tension control applications) Bit 9: Current loop optimization enabling 0: Invalid</p> <p>1: Enable (suitable for low carrier frequency ratio applications) Bit 10: Speed loop optimization enabling 0: Invalid</p> <p>1: Enable (requiring inertia identification) Bit 11–Bit 15: Reserved</p>		
P03.49	Closed-loop speed observation band width of motor 1	Setting range: 1.0–200.0	10.0	○
P03.50	Vector control energy-saving mode selection of motor 1	Setting range: 0–3 0: Invalid 1: Max. efficiency (recommended) 2: Optimal power factor 3: MTPA	0	◎
P03.51	Energy-saving optimization coefficient of motor 1	Setting range: 25.0%–400.0%	100.0	○
P03.54	Current-loop band width of motor 1	Setting range: 0–2000	400	○

Function code	Name	Description	Default	Modify
		<p>Note:</p> <ul style="list-style-type: none"> • P03.54 is a current loop PI regulation parameter. It impacts the dynamic response speed and control accuracy of the system. Generally, you do not need to modify it. • Applicable to SVC 0 (P00.00 = 0) and SVC 1 (P00.00 = 1). 		
P03.58	Quick exciting current of motor 1	0.0–200.0%	0.0	◎
P03.65	Current-loop integral coefficient after autotuning of motor 1	Setting range: 0–65535	0	○
P03.68	Upper limit frequency bias value in torque control of motor 1	Setting range: 0.00Hz–P00.03	0.00	○
P03.69	Upper limit frequency acceleration/deceleration selection in torque control of motor 1	Setting range: 0–4 0: No limit on acceleration or deceleration 1: Acceleration/deceleration time 1 2: Acceleration/deceleration time 2 3: Acceleration/deceleration time 3 4: Acceleration/deceleration time 4	0	○

G.5 Group P04—V/F control of motor 1

Function code	Name	Description	Default	Modify
P04.00	V/F curve setting of motor 1	Specifies the V/F curve of motor 1 to meet the needs of different loads. Setting range: 0–5 0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7)	0	◎

Function code	Name	Description	Default	Modify
		<p>4: Torque-down V/F curve (power of 2.0)</p> <p>Curves 2 – 4 are suitable for torque loads such as fans and pumps.</p> <p>Adjust according to load characteristics to optimize performance.</p> <p>5: Customized V/F (V and F separation). Voltage (V) and frequency (F) can be controlled independently:</p> <ul style="list-style-type: none"> – F is adjusted via the frequency reference channel set by P00.06. – V is adjusted via the voltage reference channel set by P04.13. <p>This mode allows modification of the V/F curve to match specific load requirements.</p>		
P04.01	Torque boost of motor 1	<p>Setting range: 0.0–10.0%</p> <p>Note: 100% corresponds to the rated voltage of motor 1. When the value is set to 0.0%, the inverter uses automatic torque boost.</p>	0.0	<input type="radio"/>
P04.02	Torque boost cut-off of motor 1	<p>Setting range: 0.0–50.0%</p> <p>Note: 100% corresponds to the rated frequency of motor 1.</p>	20.0	<input type="radio"/>
P04.03	V/F frequency point 1 of motor 1	<p>When P04.00=1 (multi-dot V/F curve), you can set the V/F curve through P04.03–P04.08.</p> <p>Setting range: 0.00–P04.05(Hz)</p> <p>Note: $V1 \leq V2 \leq V3, f1 \leq f2 \leq f3$ Too high voltage for low frequency will cause motor overheat or damage and cause inverter overcurrent stall or overcurrent protection.</p>	0.00	<input type="radio"/>
P04.04	V/F voltage point 1 of motor 1	<p>Setting range: 0.0–110.0%</p> <p>Note: See the description for P04.03. 100% corresponds to the motor rated voltage.</p>	0.0	<input type="radio"/>
P04.05	V/F frequency point 2 of motor 1	<p>Setting range: P04.03–P04.07 (Hz)</p> <p>Note: See the description for P04.03.</p>	0.00	<input type="radio"/>

Function code	Name	Description	Default	Modify
P04.06	V/F voltage point 2 of motor 1	Setting range: 0.0–110.0% Note: See the description for P04.03. 100% corresponds to the motor rated voltage.	0.0	<input type="radio"/>
P04.07	V/F frequency point 3 of motor 1	Setting range: P04.05–P02.02 (Hz, Rated frequency of AM 1) or P04.05–P02.16 (Hz, Rated frequency of SM 1) Note: See the description for P04.03.	0.00	<input type="radio"/>
P04.08	V/F voltage point 3 of motor 1	Setting range: 0.0–110.0% Note: See the description for P04.03. 100% corresponds to the motor rated voltage.	0.0	<input type="radio"/>
P04.09	V/F slip compensation gain of motor 1	Used to compensate for the motor rotating speed change caused by load change in the V/F mode, and thus improve the rigidity of the mechanical characteristics of the motor. Setting range: 0.0–200.0%	100.0	<input type="radio"/>
P04.10	Low-frequency oscillation control factor of motor 1	In V/F control mode, large-power motors may experience current oscillations at certain frequencies, potentially causing unstable motor operation or inverter overcurrent.	10	<input type="radio"/>
P04.11	High-frequency oscillation control factor of motor 1	Adjust this parameter to suppress such oscillations and stabilize motor running. Setting range: 0–100	10	<input type="radio"/>
P04.12	Oscillation control threshold of motor 1	Setting range: 0.00Hz–P00.03	30.00	<input type="radio"/>
P04.13	Voltage setting channel selection for motor 1	Setting range: 0–15 0: Set by P04.14 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved		
P04.14	Voltage set through keypad for motor 1	The function code is the voltage digital setting when "keypad" is selected as the voltage setting channel. Setting range: 0.0–100.0%	100.0	○
P04.15	Voltage increase time of motor 1	Voltage increase time means the time needed for the inverter to accelerate from min. output voltage to the max. output frequency. Setting range: 0.0–3600.0s	5.0	○
P04.16	Voltage decrease time of motor 1	Voltage decrease time means the time needed for the inverter to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0–3600.0s	5.0	○
P04.17	Max. output voltage of motor 1	Specifies the upper limit of output voltage. Setting range: P04.18–100.0% Note: 100% corresponds to the motor rated voltage.	100.0	○
P04.18	Min. output voltage of motor 1	Specifies the lower limit of output voltage. Setting range: 0.0%–P04.17 Note: 100% corresponds to the motor rated voltage.	0.0	○
P04.19	Weakening coefficient in constant power zone for motor 1	Setting range: 1.00–1.30	1.00	○
P04.20	Pull-in current 1 in V/F control of SM 1	When the SM V/F control mode is enabled, the function code is used	30.0	○

Function code	Name	Description	Default	Modify
		<p>to set the reactive current of the motor when the output frequency is lower than the frequency specified by P04.22.</p> <p>Setting range: -100.0%–100.0%</p> <p>Note: 100% corresponds to the motor rated current.</p>		
P04.21	Pull-in current 2 in V/F control of SM 1	<p>When the SM V/F control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is greater than the frequency specified by P04.22.</p> <p>Setting range: -100.0%–100.0%</p> <p>Note: 100% corresponds to the motor rated current.</p>	10.0	<input type="radio"/>
P04.22	V/F control pull-in current frequency switching point for SM 1	<p>When the SM VF control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2.</p> <p>Setting range: 0.0–200.0%</p> <p>Note: 100% corresponds to the motor rated frequency.</p>	20.0	<input type="radio"/>
P04.23	V/F control reactive current closed-loop proportional coefficient for SM 1	<p>When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control.</p> <p>Setting range: 0–500</p>	50	<input type="radio"/>
P04.24	V/F control reactive current closed-loop integral time for SM 1	<p>When the SM VF control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control.</p> <p>Setting range: 0–300</p>	30	<input type="radio"/>
P04.25	V/F control reactive closed-loop output limit for SM 1	Setting range: 0–16000	8000	<input type="radio"/>
P04.26	Enabling IF mode for AM 1	Setting range: 0–1	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P04.27	Current setting in IF mode for AM 1	Setting range: 0.0–200.0%	120.0	○
P04.28	Proportional coefficient in IF mode for AM 1	Setting range: 0–5000	350	○
P04.29	Integral coefficient in IF mode for AM 1	Setting range: 0–5000	150	○
P04.30	Frequency threshold for switching off IF mode for motor 1	Setting range: 0.00Hz–P04.31	10.00	○
P04.31	End frequency point for switching off IF mode for motor 1	Setting range: P04.30–P00.03(Hz)	25.00	○
P04.32	V/F control energy-saving mode selection for AM 1	Setting range: 0–3 0: Disable (Energy saving is invalid) 1: Max. efficiency 2: Optimal power factor 3: Max. ratio of torque to current	0	◎
P04.33	V/F control energy-saving optimization coefficient for AM 1	Setting range: 25.0%–400.0%	100.0	○

G.6 Group P05—Input terminal functions

Function code	Name	Description	Default	Modify
P05.00	HDI input type	Setting range: 0–1 0: HDI1 is high-speed pulse input 1: HDI1 is digital input	0	◎
P05.01	Function of DI1	Setting range: 0–95 0: No function 1: Run forward 2: Run reverse 3: Three-wire running control 4: Jog forward 5: Jog reverse	1	◎
P05.02	Function of DI2		4	◎
P05.03	Function of DI3		7	◎
P05.04	Function of DI4		0	◎
P05.05	Function of DI5		0	◎
P05.06	Function of DI6		0	◎
P05.07	Function of DI7		0	◎

Function code	Name	Description	Default	Modify
P05.08	Function of DI8	6: Coast to stop 7: Reset faults 8: Pause running 9: External fault input 10: Increase frequency setting (UP) 11: Decrease frequency setting (DOWN) 12: Clear the frequency increase/decrease setting 13: Switch between A setting and B setting 14: Switch between combination setting and A setting 15: Switch between combination setting and B setting 16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Pause multi-step speed running 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 23: Simple PLC stop reset 24: Pause simple PLC 25: Pause PID control 26: Pause wobbling frequency 27: Reset wobbling frequency 28: Counter reset 29: Switch between speed control and torque control 30: Disable acceleration/deceleration 31: Trigger the counter 32: Motor switchover 33: Reserved 34: DC braking 35: Clear the frequency increase/decrease setting temporarily	0	◎
P05.11	Function of HDI1		0	◎

Function code	Name	Description	Default	Modify
		<p>36: Switch the running command channel to keypad</p> <p>37: Switch the running command channel to terminal</p> <p>38: Switch the running command channel to communication</p> <p>39: Pre-exciting command</p> <p>40: Clear electricity consumption</p> <p>41: Keep electricity consumption</p> <p>42: Switch the setting source of braking torque upper limit to keypad</p> <p>43–55: Reserved</p> <p>56: Emergency stop</p> <p>57: Motor overtemperature fault input</p> <p>58–60: Reserved</p> <p>61: Switch PID polarities</p> <p>82: Fire mode trigger</p> <p>Note: DI5–DI8 are virtual terminals enabled by P05.16 and can only be modified through communication. For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols, see the PZD receiving function code options.</p>		
P05.14	Input terminal polarity	<p>Specifies input terminal polarity. When a bit is 0, the input terminal is positive. When a bit is 1, the input terminal is negative.</p> <p>Setting range: 0x000–0x7FF</p> <p>Bit 0: DI1</p> <p>Bit 1: DI2</p> <p>Bit 2: DI3</p> <p>Bit 3: DI4</p> <p>Bit 4: DI5</p> <p>Bit 5: DI6</p> <p>Bit 6: DI7</p>	0x000	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Bit 7: DI8 Bit 8: Reserved Bit 9: Reserved Bit 10: HDI1		
P05.15	Digital input filter time	Specifies the sampling filter time of the DI1–DI8, and HDI1 terminals. In strong interference cases, increase the value to avoid maloperation. Setting range: 0.000–1.000s	0.010	○
P05.16	Virtual terminal setting	Setting range: 0x000–0x7FF (0: disable; 1: enable) Bit 0: DI1 Bit 1: DI2 Bit 2: DI3 Bit 3: DI4 Bit 4: DI5 Bit 5: DI6 Bit 6: DI7 Bit 7: DI8 Bit 8: Reserved Bit 9: Reserved Bit 10: HDI1 Note: After virtual terminals are enabled, the terminal states can only be modified through communication. For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols, see the PZD receiving function code options.	0x000	◎
P05.17	Terminal control mode	Specifies the terminal control mode. Setting range: 0–3 0: Two-wire control mode 1 1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2	0	○
P05.18	DI1 switch-on delay	Used to specify the delay time corresponding to the electrical	0.000	○

Function code	Name	Description	Default	Modify
P05.19	DI1 switch-off delay	level change when a programmable input terminal switches on or switches off. Setting range: 0.000–50.000s	0.000	<input type="radio"/>
P05.20	DI2 switch-on delay		0.000	<input type="radio"/>
P05.21	DI2 switch-off delay	Note: DI5–DI8 are virtual terminals enabled by P05.16 and can only be modified through communication. For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols, see the PZD receiving function code options.	0.000	<input type="radio"/>
P05.22	DI3 switch-on delay		0.000	<input type="radio"/>
P05.23	DI3 switch-off delay		0.000	<input type="radio"/>
P05.24	DI4 switch-on delay		0.000	<input type="radio"/>
P05.25	DI4 switch-off delay		0.000	<input type="radio"/>
P05.26	DI5 switch-on delay		0.000	<input type="radio"/>
P05.27	DI5 switch-off delay		0.000	<input type="radio"/>
P05.28	DI6 switch-on delay		0.000	<input type="radio"/>
P05.29	DI6 switch-off delay		0.000	<input type="radio"/>
P05.30	DI7 switch-on delay		0.000	<input type="radio"/>
P05.31	DI7 switch-off delay		0.000	<input type="radio"/>
P05.32	DI8 switch-on delay		0.000	<input type="radio"/>
P05.33	DI8 switch-off delay		0.000	<input type="radio"/>
P05.38	HDI1 switch-on delay		0.000	<input type="radio"/>
P05.39	HDI1 switch-off delay		0.000	<input type="radio"/>
P05.42	AI1 lower limit	The function codes define the relationship between the analog input voltage and its corresponding setting. When the analog input voltage exceeds the range from the	0.00	<input type="radio"/>
P05.43	Corresponding setting of AI1 lower limit		0.0	<input type="radio"/>
P05.44	AI1 upper limit		10.00	<input type="radio"/>

Function code	Name	Description	Default	Modify
P05.45	Corresponding setting of AI1 upper limit	upper limit to the lower limit, the upper limit or lower limit is used. When the analog input is current input, 0mA–20mA current corresponds to 0V–10V voltage.	100.0	<input type="radio"/>
P05.46	AI1 input filter time		0.030	<input type="radio"/>
P05.47	AI2 lower limit		-10.00	<input type="radio"/>
P05.48	Corresponding setting of AI2 lower limit	In different applications, 100.0% of the analog setting corresponds to different nominal values. See the descriptions of each application section for details. See section 6.9.2.1 Analog input.	-100.0	<input type="radio"/>
P05.49	AI2 middle value 1	Setting range: P05.42: 0.00V–P05.44 P05.43: -300.0%–300.0%	0.00	<input type="radio"/>
P05.50	Corresponding setting of AI2 middle value 1	P05.44: P05.42–10.00V P05.45: -300.0%–300.0%	0.0	<input type="radio"/>
P05.51	AI2 middle value 2	P05.46: 0.000–10.000s P05.47: -10.00V–P05.49 P05.48: -300.0%–300.0%	0.00	<input type="radio"/>
P05.52	Corresponding setting of AI2 middle value 2	P05.49: P05.47–P05.51(V) P05.50: -300.0%–300.0%	0.0	<input type="radio"/>
P05.53	AI2 upper limit	P05.51: P05.49–P05.53(V) P05.52: -300.0%–300.0%	10.00	<input type="radio"/>
P05.54	Corresponding setting of AI2 upper limit	P05.53: P05.51–10.00V P05.54: -300.0%–300.0%	100.0	<input type="radio"/>
P05.55	AI2 input filter time	P05.55: 0.000–10.000s P05.56: 0.00V–P05.58 P05.57: -300.0%–300.0%	0.030	<input type="radio"/>
P05.56	AI3 lower limit	P05.58: P05.56–10.00V P05.59: -300.0%–300.0%	0.00	<input type="radio"/>
P05.57	Corresponding setting of AI3 lower limit	P05.60: 0.000–10.000s	0.0	<input type="radio"/>
P05.58	AI3 upper limit	Note: AI1: supports 0–10V, corresponding to 0–20mA.	10.00	<input type="radio"/>
P05.59	Corresponding setting of AI3 upper limit	AI2: supports -10–10V, corresponding to 0–20mA.	100.0	<input type="radio"/>
P05.60	AI3 input filter time	AI3: uses the keypad potentiometer as the input source.	0.030	<input type="radio"/>
P05.67	Corresponding setting of HDI1	The function codes define the relationship between the high-	0.000	<input type="radio"/>

Function code	Name	Description	Default	Modify
	lower limit frequency	speed pulse input and the corresponding setting. When the high-speed pulse input exceeds the range from the upper limit to the lower limit, the upper limit or lower limit is used.		
P05.68	HDI1 upper limit frequency	P05.66: 0.000kHz–P05.68 P05.67: -300.0%–300.0% P05.68: P05.66–50.000kHz P05.69: -300.0%–300.0% P05.70: 0.000–10.000s	0.0	○
P05.69	Corresponding setting of HDI1 upper limit frequency	Setting range: P05.66: 0.000kHz–P05.68 P05.67: -300.0%–300.0% P05.68: P05.66–50.000kHz P05.69: -300.0%–300.0% P05.70: 0.000–10.000s	50.000	○
P05.70	HDI1 frequency input filter time		100.0	○
P05.67	Corresponding setting of HDI1 lower limit frequency	Note: HDI1 high-speed pulse input ranges from 0.000kHz to 50.000kHz.	0.030	○
P05.76	AI input signal type selection	Setting range: 0x0–0x3 Bit0: AI1 input signal type selection 0: Voltage 1: Current Bit1: AI2 input signal type selection 0: Voltage 1: Current Note: The setting is made by turning the AI switch to the "I" or "V" position.	0x0	◎

G.7 Group P06—Output terminal functions

Function code	Name	Description	Default	Modify
P06.00	HDO1 output type	Setting range: 0–1 0: High-speed pulse output 1: Digital output Note: HDO1 uses push-pull output.	0	◎
P06.04	HDO1 output	Setting range: 0–63 0: Invalid 1: Running 2: Running forward 3: Running reverse 4: Jogging	0	○
P06.05	RO1 output		1	○

Function code	Name	Description	Default	Modify
		<p>5: Inverter in fault</p> <p>6: Frequency level detection FDT1</p> <p>7: Frequency level detection FDT2</p> <p>8: Frequency reached</p> <p>9: Running in zero speed</p> <p>10: Frequency upper limit reached</p> <p>11: Frequency lower limit reached</p> <p>12: Ready for running</p> <p>13: Pre-exciting</p> <p>14: Overload alarm</p> <p>15: Underload alarm</p> <p>16: Simple PLC stage completed</p> <p>17: Simple PLC cycle completed</p> <p>18: Set counting value reached</p> <p>19: Specified counting value reached</p> <p>20: External fault is valid</p> <p>21: Specified function code value greater than threshold</p> <p>22: Running time reached</p> <p>23: Modbus/ Modbus TCP communication virtual terminal output</p> <p>24: Reserved</p> <p>25: Ethernet communication virtual terminal output</p> <p>26: DC bus voltage established</p> <p>27–28: Reserved</p> <p>29: STO action</p> <p>30–33: Reserved</p> <p>34: EtherCAT/PROFINET/EtherNet IP communication virtual terminal output</p> <p>35–36: Reserved</p> <p>37: Any frequency reached</p> <p>56: Fire mode enabled</p> <p>Note: When P06.00 is set to 1, P06.04 (HDO1 output) is valid.</p>		
P06.09	Output terminal polarity	<p>Setting range: 0x00–0x1F</p> <p>Bit 0: Reserved</p> <p>Bit 1: Reserved</p>	0x00	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1		
P06.16	HDO1 switch-on delay	Specifies the delay time corresponding to the electrical level change when a programmable output terminal switches on or switches off. Setting range: 0.000–50.000s	0.000	<input type="radio"/>
P06.17	HDO1 switch-off delay	Specifies the delay time corresponding to the electrical level change when a programmable output terminal switches on or switches off. Setting range: 0.000–50.000s	0.000	<input type="radio"/>
P06.18	RO1 switch-on delay	Specifies the delay time corresponding to the electrical level change when a programmable output terminal switches on or switches off. Setting range: 0.000–50.000s	0.000-	-
P06.19	RO1 switch-off delay	Specifies the delay time corresponding to the electrical level change when a programmable output terminal switches on or switches off. Setting range: 0.000–50.000s	0.000	<input type="radio"/>
P06.26	AO1 output	Setting range: 0–63	0	<input type="radio"/>
P06.28	HDO1 high-speed pulse output	0: Running frequency 1: Set frequency 2: Ramp reference frequency 3: Rotational speed (100% corresponds to the speed corresponding to the max. output frequency) 4: Output current (100% corresponds to twice the inverter rated current) 5: Output current (100% corresponds to twice the motor rated current)	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		<p>6: Output voltage (100% corresponds to 1.5 times the inverter rated voltage)</p> <p>7: Output power (100% corresponds to twice the motor rated power)</p> <p>8: Set torque (100% corresponds to twice the motor rated torque)</p> <p>9: Output torque (Absolute value, 100% corresponds to twice the motor rated torque)</p> <p>10: AI1 input</p> <p>11: AI2 input</p> <p>12: AI3 input</p> <p>13: Reserved</p> <p>14: HDI1 input value</p> <p>15: Reserved</p> <p>16: Value 1 set through Modbus/Modbus TCP communication</p> <p>17: Value 2 set through Modbus/Modbus TCP communication</p> <p>18–19: Reserved</p> <p>20: Value 1 set through Ethernet communication</p> <p>21: Value 2 set through Ethernet communication</p> <p>22: Value 1 set through EtherCAT/PROFINET/EtherNet IP communication</p> <p>23: Value 2 set through EtherCAT/PROFINET/EtherNet IP communication</p> <p>24: Torque current (100% corresponds to triple the motor rated current)</p> <p>25: Exciting current (100% corresponds to triple the motor rated current)</p> <p>26: Set frequency (bipolar)</p>		

Function code	Name	Description	Default	Modify
		<p>27: Ramp reference frequency (bipolar)</p> <p>28: Rotational speed of running (bipolar)</p> <p>29–30: Reserved</p> <p>31: Rotational speed of running (100% corresponds to the speed at twice the motor rated frequency)</p> <p>32: Output torque (Actual value, 100% corresponds to twice the motor rated torque)</p> <p>33: AIAO detected temperature output</p> <p>34–39: Reserved</p> <p>40: Specified function code value</p> <p>41–63: Reserved</p> <p>Note: When P06.00 is set to 0, P06.28 (HDO1 high-speed pulse output) is valid.</p>		
P06.29	AO1 output lower limit	<p>The function codes define the relationship between the output value and analog output. When the output value exceeds the allowed range, the output uses the lower limit or upper limit.</p> <p>When the analog output is current output, 1mA equals 0.5V.</p> <p>In different cases, the corresponding analog output of 100% of the output value is different. See section 6.9.2.2 Analog output.</p> <p>Note: AO1 supports 0–10V, corresponding to 0–20mA.</p> <p>Setting range:</p> <p>Setting range of P06.29: -300.0%–P06.31</p> <p>Setting range of P06.30: 0.00–10.00V</p> <p>Setting range of P06.31: P06.29–300.0%</p>	0.0	<input type="radio"/>
P06.30	AO1 output corresponding to lower limit		0.00	<input type="radio"/>
P06.31	AO1 output upper limit		100.0	<input type="radio"/>
P06.32	AO1 output corresponding to upper limit		10.00	<input type="radio"/>
P06.33	AO1 output filter time		0.000	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Setting range of P06.32: 0.00–10.00V Setting range of P06.33: 0.000–10.000s		
P06.41	HDO1 output lower limit	The function codes define the relationship between the output value and high-speed pulse output. When the output value exceeds the allowed range, the output uses the lower limit or upper limit. Setting range: Setting range of P06.41: -300.0%–P06.43 Setting range of P06.42: 0.00–50.00kHz	0.0	<input type="radio"/>
P06.42	HDO1 output corresponding to lower limit		0.00	<input type="radio"/>
P06.43	HDO1 output upper limit		100.0	<input type="radio"/>
P06.44	HDO1 output corresponding to upper limit		50.00	<input type="radio"/>
P06.45	HDO1 output filter time	Setting range of P06.43: P06.41–300.0% Setting range of P06.44: 0.00–50.00kHz Setting range of P06.45: 0.000–10.000s Note: HDO1 high-speed pulse output ranges from 0.000kHz to 50.00kHz.	0.000	<input type="radio"/>
P06.47	AIAO temperature measurement selection	When AIAO temperature measurement is enabled, you need to turn the corresponding AI switch to the "V" position, set the AI input type to voltage, turn the AO switch to the "I" position, connect the temperature resistor between the AO terminal and GND terminal, and connect the corresponding AI terminal to the AO terminal. Setting range: 0x00–0x15 Ones place: Temperature sensor type 0: None 1: PT100 2: PT1000 3: KTY84 4–5: Reserved	0x00	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Tens place: AI input source 0: AI1 1: AI2 Note: Before using the AI/AO temperature measurement function, ensure that AI/AO has been calibrated.		
P06.48	AIAO detected temperature OT protection threshold	Setting range: 0.0–200.0°C	110.0	<input type="radio"/>
P06.51	AIAO measured temperature	Setting range: -20.0–200.0°C	0.0	<input checked="" type="radio"/>
P06.56	Digital output specified function code	Setting range: 0.00–97.99 Note: The setting 0 indicates invalid function code. To use this function, select 21 as the digital output function. For details, see section 6.9.1.2 Digital output.	97.99	<input type="radio"/>
P06.57	Digital output specified function code threshold	Setting range: 0–65535 Note: When the specified function code is a signed value, the threshold will be internally converted accordingly.	65535	<input type="radio"/>
P06.58	Digital output specified function code hysteresis width	Setting range: 0–65535 Note: The output is valid when the specified function code value exceeds the threshold. The output is invalid when the specified function code value plus the hysteresis width is less than or equal to the threshold. Within the hysteresis range, the output state remains unchanged.	65535	<input type="radio"/>
P06.59	HDO1 high-speed pulse/AO specified function code	Setting range: 0.00–97.99 Note: The setting 0 indicates invalid function code. To use this function, select 40 as the digital output function. For details, see section 6.9.2.2 Analog output.	97.99	<input type="radio"/>

Function code	Name	Description	Default	Modify
P06.60	HDO1 high-speed pulse/AO base value	Setting range: 1–65535	65535	○
P06.61	HDO1 high-speed pulse/AO offset	Setting range: -100.00%–100.00% Note: When HDO1 high-speed pulse/AO1 setting is the specified function code value, the output value is calculated as: (Specified function code value/Base value) * 100.00% + Offset	0.00	○

G.8 Group P07—Human-machine interface

Function code	Name	Description	Default	Modify
P07.00	User password	The user password protection function is not enabled by default (that is, the default value is 0). If it is set to any non zero value, the password protection function is enabled. After you exit the function code editing interface, the password takes effect within 1 minute. When you press the PRG/JOG key,"0.0.0.0.0" is displayed. You need to enter the correct user password to enter the function code editing interface. When you set the value to 00000, the user password you have set is cleared, and the user password protection function is disabled. Setting range: 0–65535	0	○
P07.01	Parameter copy	Setting range: 0–4 0: No operation 1: Upload parameters to the keypad 2: Download all parameters (including motor parameters) 3: Download non-motor parameters 4: Download motor parameters	0	◎

Function code	Name	Description	Default	Modify
		<p>Note: The parameter copying function is available only with the external LCD keypad and is not supported by the local LED keypad or external LED keypad.</p>		
P07.02	Function of QUICK/JOG	<p>Setting range: 0x00–0x26</p> <p>Ones place: Function of QUICK/JOG</p> <p>0: No function</p> <p>1: Jog</p> <p>2: Reserved</p> <p>3: Switch between forward and reverse rotating</p> <p>4: Clear the UP/DOWN setting</p> <p>5: Coast to stop</p> <p>6: Switch command channels in sequence</p> <p>Tens place: Reserved</p> <p>Note: The external keypad has the QUICK/JOG key, while pressing and holding the PRO/OG key on the local LED keypad performs the same function as the QUICK/JOG key.</p>	0x01	◎
P07.03	Sequence of switching running-command channels by pressing QUICK	<p>Specifies the sequence of switching running-command channels by pressing the key when P07.02=6.</p> <p>Setting range: 0–3</p> <p>0: Keypad→Terminal→Communication</p> <p>1: Keypad↔Terminal</p> <p>2: Keypad↔Communication</p> <p>3: Terminal↔Communication</p> <p>Note: The external keypad has the QUICK/JOG key, while pressing and holding the PRO/OG key on the local LED keypad performs the same function as the QUICK/JOG key.</p>	0	○

Function code	Name	Description	Default	Modify
P07.04	Stop function validity of STOP/RST	<p>Specifies the validness range of the stop function. For fault reset, the key is valid in any conditions.</p> <p>Setting range: 0–3</p> <p>0: Valid only for keypad control</p> <p>1: Valid both for keypad and terminal control</p> <p>2: Valid both for keypad and communication control</p> <p>3: Valid for all control modes</p>	0	<input type="radio"/>
P07.05	Selection 1 of parameters displayed in running state	<p>Setting range: 0x0000–0xFFFF</p> <p>Bit 0: Running frequency (Hz on)</p> <p>Bit 1: Set frequency (Hz blinking)</p> <p>Bit 2: Bus voltage (V on)</p> <p>Bit 3: Output voltage (V on)</p> <p>Bit 4: Output current (A on)</p> <p>Bit 5: Running speed (rpm on)</p> <p>Bit 6: Output power (% on)</p> <p>Bit 7: Output torque (% on)</p> <p>Bit 8: PID reference value (% blinking)</p> <p>Bit 9: PID feedback value (% on)</p> <p>Bit 10: Input terminal status</p> <p>Bit 11: Output terminal status</p> <p>Bit 12: Set torque (% on)</p> <p>Bit 13: Pulse counting value</p> <p>Bit 14: Motor overload percentage (% on)</p> <p>Bit 15: PLC and current step number of multi-step speed</p>	0x03FF	<input type="radio"/>
P07.06	Selection 2 of parameters displayed in running state	<p>Setting range: 0x0000–0xFFFF</p> <p>Bit 0: AI1 value (V on)</p> <p>Bit 1: AI2 value (V on)</p> <p>Bit 2: AI3 value (V on)</p> <p>Bit 3: Reserved</p> <p>Bit 4: High-speed pulse HDI1 frequency</p> <p>Bit 5: Reserved</p> <p>Bit 6: inverter overload percentage (% on)</p>	0x0000	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Bit 7: Ramp frequency reference (Hz on) Bit 8: Linear speed Bit 9: Reserved Bit 10: Frequency upper limit Bit 11–Bit 15: Reserved		
P07.08	Selection 1 of parameters displayed in stopped state	Setting range: 0x0000–0xFFFF Bit 0: Set frequency (Hz on, blinking slowly) Bit 1: Bus voltage (V on) Bit 2: Input terminal status Bit 3: Output terminal status Bit 4: PID reference value (%) blinking) Bit 5: PID feedback value (%) on) Bit 6: Set torque (% on) Bit 7: AI1 value (V on) Bit 8: AI2 value (V on) Bit 9: AI3 value (V on) Bit 10: Reserved Bit 11: High-speed pulse HDI1 frequency Bit12: Reserved Bit 13: Count value Bit 14: PLC and actual step number of multi-step speed Bit 15: Frequency upper limit	0x00FF	○
P07.12	Inverter module temperature	Setting range: -20.0–120.0°C	0.0	●
P07.13	Control software version	Setting range: 1.00–655.35	Version dependent	●
P07.14	Drive software version	Setting range: 1.00–655.35	Version dependent	●
P07.17	Inverter model	Setting range: 0x0000–0xFFFF Bit0–bit3: Reserved Bit4–bit11: Chip type and manufacturer 0x00: DSP(TI) 0x01–0xFF: Reserved Bit12–bit15: Inverter series	Model dependent	●

Function code	Name	Description	Default	Modify
		0x0: NXG 0x1–0xF: Reserved		
P07.18	Inverter rated power	Setting range: 0.2–3000.0kW	Model dependent	●
P07.19	Inverter rated voltage	Setting range: 50–1200V	Model dependent	●
P07.20	Inverter rated current	Setting range: 0.01–600.00A	Model dependent	●
P07.21	Factory bar code 1	Setting range: 0x0000–0xFFFF	0xFFFF	●
P07.22	Factory bar code 2	Setting range: 0x0000–0xFFFF	0xFFFF	●
P07.23	Factory bar code 3	Setting range: 0x0000–0xFFFF	0xFFFF	●
P07.24	Factory bar code 4	Setting range: 0x0000–0xFFFF	0xFFFF	●
P07.25	Factory bar code 5	Setting range: 0x0000–0xFFFF	0xFFFF	●
P07.26	Factory bar code 6	Setting range: 0x0000–0xFFFF	0xFFFF	●
P07.27	Present fault type	Setting range: 0–588 0: No fault 1–3: Reserved 4: Overcurrent during acceleration (E4) 5: Overcurrent during deceleration (E5) 6: Overcurrent during constant speed running (E6) 7: Overvoltage during acceleration (E7) 8: Overvoltage during deceleration (E8) 9: Overvoltage during constant speed running (E9) 10: DC bus undervoltage (E10) 11: Motor overload (E11) 12: Inverter overload (E12) 13: Phase loss on input side (E13) 14: Phase loss on output side (E14)	0	●
P07.28	Last fault type		0	●
P07.29	2nd-last fault type		0	●
P07.30	3rd-last fault type		0	●
P07.31	4th-last fault type		0	●
P07.32	5th-last fault type		0	●

Function code	Name	Description	Default	Modify
		15: Reserved 16: Inverter module overheat (E16) 17: External fault (E17) 18: Modbus/Modbus TCP communication fault (E18) 19: Current detection fault (E19) 20: Motor autotuning fault (E20) 21: EEPROM operation error (E21) 22: PID feedback offline fault (E22) 23: Braking unit fault (E23) 24: Running time reached (E24) 25: Electronic overload (E25) 26: Reserved 27: Parameter upload error (E27) 28: Parameter download error (E28) 29: Reserved 30: Ethernet communication fault (E30) 31: Reserved 32: To-ground short-circuit fault (E32) 33: Reserved 34: Speed deviation fault (E34) 35: Mal-adjustment fault (E35) 36: Underload fault (E36) 37–39: Reserved 40: STO safe torque off (E40) 41: STO channel 1 safety circuit exception (E41) 42: STO channel 2 safety circuit exception (E42) 43: Exception in both STO channels 1 and 2 (E43) 44: STO safety code FLASH CRC fault (E44) 45–56: Reserved 57: PROFINET communication timeout fault (E57) 58: Reserved 59: Motor overtemperature fault (E59)		

Function code	Name	Description	Default	Modify
		60: Communication card identifying failure (E60) 61–62: Reserved 63: Communication card communication timeout fault (E63) 64–65: Reserved 66: EtherCAT communication timeout fault (E66) 67–91: Reserved 92: AI1 disconnection fault (E92) 93: AI2 disconnection fault (E93) 94: AI3 disconnection fault (E94) 95: EtherNet IP communication timeout (E95) 96: No upgrade bootload (E96) 97–586: Reserved 587: Dual-CPU communication fault 1 (E587) 588: Dual-CPU communication fault 2 (E588)		
P07.33	Running frequency at present fault	Setting range: 0.00–600.00Hz	0.00	●
P07.34	Ramp reference frequency at present fault	Setting range: 0.00–600.00Hz	0.00	●
P07.35	Output voltage at present fault	Setting range: 0–1200V	0	●
P07.36	Output current at present fault	Setting range: 0.00–630.00A	0.00	●
P07.37	Bus voltage at present fault	Setting range: 0.0–2000.0V	0.0	●
P07.38	Max. temperature at present fault	Setting range: -20.0–120.0°C	0.0	●
P07.39	Input terminal status at present fault	Setting range: 0x0000–0xFFFF	0x0000	●
P07.40	Output terminal state at present fault	Setting range: 0x0000–0xFFFF	0x0000	●

Function code	Name	Description	Default	Modify
P07.44	Running frequency at last fault	Setting range: 0.00–600.00Hz	0.00	●
P07.45	Ramp reference frequency at last fault	Setting range: 0.00–600.00Hz	0.00	●
P07.46	Output voltage at last fault	Setting range: 0–1200V	0	●
P07.47	Output current at last fault	Setting range: 0.00–630.00A	0.00	●
P07.48	Bus voltage at last fault	Setting range: 0.0–2000.0V	0.0	●
P07.49	Temperature at last fault	Setting range: -20.0–120.0°C	0.0	●
P07.50	Input terminal state at last fault	Setting range: 0x0000–0xFFFF	0x0000	●
P07.51	Output terminal state at last fault	Setting range: 0x0000–0xFFFF	0x0000	●
P07.55	Running frequency at 2nd-last fault	Setting range: 0.00–600.00Hz	0.00	●
P07.56	Ramp reference frequency at 2nd-last fault	Setting range: 0.00–600.00Hz	0.00	●
P07.57	Output voltage at 2nd-last fault	Setting range: 0–1200V	0	●
P07.58	Output current at 2nd-last fault	Setting range: 0.00–630.00A	0.00	●
P07.59	Bus voltage at 2nd-last fault	Setting range: 0.0–2000.0V	0.0	●
P07.60	Temperature at 2nd-last fault	Setting range: -20.0–120.0°C	0.0	●
P07.61	Input terminal state at 2nd-last fault	Setting range: 0x0000–0xFFFF	0x0000	●
P07.62	Output terminal state at 2nd-last fault	Setting range: 0x0000–0xFFFF	0x0000	●

Function code	Name	Description	Default	Modify
P07.72	Frequency display coefficient	Setting range: 0.01–10.00 Display frequency = Running frequency * P07.72	1.00	○
P07.73	Rotational speed display coefficient	Setting range: 0.1–999.9% Mechanical rotation speed = $120 \times (\text{Displayed running frequency}) \times P07.73 / (\text{Number of motor pole pairs})$	100.0	○
P07.74	Linear speed display coefficient	Setting range: 0.1%–999.9% Linear speed = (Mechanical rotation speed) \times P07.74	1.0	○
P07.75	Local accumulative running time Storage time	Setting range: 0–65535h	0	●
P07.76	Inverter electricity consumption high bit	The function code is used to display the electricity consumption of the inverter. Inverter electricity consumption = $P07.76 \times 1000 + P07.77$ Setting range: 0–65535kWh	0	●
P07.77	Inverter electricity consumption low bit	The function code is used to display the electricity consumption of the inverter. Inverter electricity consumption = $P07.76 \times 1000 + P07.77$ Setting range: 0.0–999.9kWh	0.0	●

G.9 Group P08—Enhanced functions

Function code	Name	Description	Default	Modify
P08.00	Acceleration time 2	Setting range: 0.0–3600.0s	Model dependent	○
P08.01	Deceleration time 2	Setting range: 0.0–3600.0s	Model dependent	○
P08.02	Acceleration time 3	Setting range: 0.0–3600.0s	Model dependent	○
P08.03	Deceleration time 3	Setting range: 0.0–3600.0s	Model dependent	○

Function code	Name	Description	Default	Modify
P08.04	Acceleration time 4	Setting range: 0.0–3600.0s	Model dependent	<input type="radio"/>
P08.05	Deceleration time 4	Setting range: 0.0–3600.0s	Model dependent	<input type="radio"/>
P08.06	Switching frequency of acceleration/deceleration time	Setting range: 0.00Hz–P00.03 Note: If the running frequency is greater than P08.06, switch to acceleration/deceleration time 2.	0.00	<input type="radio"/>
P08.07	Reference frequency of acceleration/deceleration time	Setting range: 0–2 0: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid for straight acceleration/deceleration only.	0	<input type="radio"/>
P08.08	Running frequency of jog	Specifies the reference frequency during jogging. Setting range: 0.00Hz–P00.03	5.00	<input type="radio"/>
P08.09	Acceleration time for jogging	Specifies the time needed for the inverter to accelerate from 0Hz to the max. output frequency (P00.03). Setting range: 0.0–3600.0s	Model dependent	<input type="radio"/>
P08.10	Deceleration time for jogging	Specifies the time needed for the inverter to decelerate from the max. output frequency (P00.03) to 0Hz. Setting range: 0.0–3600.0s	Model dependent	<input type="radio"/>
P08.11	Jump frequency 1	The inverter can avoid mechanical resonance points by setting jump frequencies. When the set frequency is within the range of jump frequency, the inverter runs at the boundary of jump frequency. The inverter supports the setting of three jump frequencies. If the jump frequency points are set to 0, this function is invalid. Setting range: 0.00Hz–P00.03	0.00	<input type="radio"/>
P08.12	Jump frequency amplitude 1		0.00	<input type="radio"/>
P08.13	Jump frequency 2		0.00	<input type="radio"/>
P08.14	Jump frequency amplitude 2		0.00	<input type="radio"/>
P08.15	Jump frequency 3		0.00	<input type="radio"/>
P08.16	Jump frequency amplitude 3		0.00	<input type="radio"/>

Function code	Name	Description	Default	Modify
P08.17	Amplitude of wobbling frequency	Setting range: 0.0–100.0% (of the set frequency)	0.0	<input type="radio"/>
P08.18	Amplitude of sudden jump frequency	Setting range: 0.0–50.0% (of the amplitude of wobbling frequency)	0.0	<input type="radio"/>
P08.19	Rise time of wobbling frequency	Setting range: 0.1–3600.0s	5.0	<input type="radio"/>
P08.20	Fall time of wobbling frequency	Setting range: 0.1–3600.0s	5.0	<input type="radio"/>
P08.21	Filter count in output torque display	Setting range: 0–8	8	<input type="radio"/>
P08.22	Output torque display selection	Setting range: 0–1 0: Based on torque current 1: Based on output power	0	<input type="radio"/>
P08.23	Number of decimal places of frequency	Setting range: 0–1 0: Two 1: One	0	<input type="radio"/>
P08.24	Number of decimal places of linear speed	Setting range: 0–3 0: None 1: One 2: Two 3: Three	0	<input type="radio"/>
P08.25	Set counting value	Setting range: P08.26–65535	0	<input type="radio"/>
P08.26	Designated counting value	Setting range: 0–P08.25	0	<input type="radio"/>
P08.27	Set running time	Setting range: 0–65535min	0	<input type="radio"/>
P08.28	Auto fault reset count	Specifies the number of automatic fault reset times when the inverter uses automatic fault reset. When the number of continuous reset times exceeds the value, the inverter reports a fault and stops. After inverter starts, If no fault occurred within 600s after the inverter starts, the number of	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		automatic fault reset times is cleared. Setting range: 0–10		
P08.29	Auto fault reset interval	Specifies the time interval from when a fault occurred to when automatic fault reset takes effect. Setting range: 0.1–3600.0s	1.0	○
P08.31	Motor switchover selection	0x00–0x14 Ones place: Switchover channel 0: Terminal 1: Modbus/Modbus TCP communication 2: Reserved 3: Ethernet 4: EtherCAT/PROFINET/EtherNet IP communication Tens place: indicates whether to enable switchover during running 0: Disable 1: Enable	0x00	○
P08.32	FDT1 electrical level detection value	Used to view the FDT1 electrical level detection value. When the output frequency exceeds the corresponding frequency of FDT electrical level, the multifunction digital output terminal continuously outputs the signal of "Frequency level detection FDT". The signal is invalid only when the output frequency decreases to a value lower than the frequency corresponding to (FDT electrical level—FDT lagging detection value). Setting range: 0.00Hz–P00.03	50.00	○
P08.33	FDT1 lagging detection value	Used to view the FDT1 lagging detection value. When the output frequency exceeds the corresponding frequency of FDT electrical level, the multifunction digital output terminal continuously outputs the signal of	5.0	○

Function code	Name	Description	Default	Modify
		"Frequency level detection FDT". The signal is invalid only when the output frequency decreases to a value lower than the frequency corresponding to (FDT electrical level—FDT lagging detection value). Setting range of: 0.0–100.0% (FDT1 electrical level)		
P08.34	FDT2 electrical level detection value	Used to view the FDT2 electrical level detection value. When the output frequency exceeds the corresponding frequency of FDT electrical level, the multifunction digital output terminal continuously outputs the signal of "Frequency level detection FDT". The signal is invalid only when the output frequency decreases to a value lower than the frequency corresponding to (FDT electrical level—FDT lagging detection value). Setting range: 0.00Hz–P00.03	50.00	○
P08.35	FDT2 lagging detection value	Used to view the FDT2 lagging detection value. When the output frequency exceeds the corresponding frequency of FDT electrical level, the multifunction digital output terminal continuously outputs the signal of "Frequency level detection FDT". The signal is invalid only when the output frequency decreases to a value lower than the frequency corresponding to (FDT electrical level—FDT lagging detection value). Setting range: 0.0–100.0% (FDT2 electrical level)	5.0	○
P08.36	Detection value for frequency being reached	When the output frequency is within the detection range, the multifunction digital output	0.00	○

Function code	Name	Description	Default	Modify
		terminal outputs the signal of "Frequency reached". Setting range: 0.00Hz–P00.03		
P08.37	Detection value for any frequency reached	Setting range: 0.00Hz–P00.03	1.00	○
P08.38	Detection time for any frequency reached	Setting range: 0.0–3600.0s	0.5	○
P08.39	Enabling dynamic braking	Setting range: 0–1 0: Disable 1: Enable	0	○
P08.40	Dynamic braking threshold voltage	Specifies the starting bus voltage of dynamic braking. Adjust this value properly to achieve effective braking for the load. The default value varies depending on the voltage class. Setting range: 200.0–2000.0V For 220V models: 380.0V For 380V models: 700.0V	Model dependent	○
P08.41	Cooling-fan running mode	Setting range: 0x00–0x12 Ones place: Run mode 0: Normal mode 1: Permanent running after power-on 2: Run mode 2 Tens place: Speed regulation mode 0: Disable speed regulation 1: Speed regulation mode 1 Note: In addition to the normal running requirements, run mode 2 has the feature that the fan still runs even when the ramp frequency is greater than 0.	0x10	○
P08.42	PWM selection	Setting range: 0x000–0x321 Ones place: PWM mode selection 0: Switch from SVPWM to DPWM 1: SPWM overmodulation throughout the entire process	0x101	◎

Function code	Name	Description	Default	Modify
		<p>Tens place: PWM low-speed carrier frequency limit 0: Low-speed carrier frequency limit mode 1 1: Low-speed carrier frequency limit mode 2 2: No limit on low-speed carrier frequency</p> <p>Hundreds place: Deadzone compensation method 0: Compensation method 1 1: Compensation method 2 2–3: Reserved</p>		
P08.43	Overmodulation selection	<p>Setting range: 0x0000–0x1111 Ones place: Overmodulation enabling 0: Invalid 1: Enable</p> <p>Tens place: Overmodulation depth 0: Mild overmodulation 1: Deepened overmodulation</p> <p>Hundreds place: Carrier frequency limit 0: Yes 1: No limit</p> <p>Thousands place: Reserved</p>	0x1001	◎
P08.44	LED keypad control setting	<p>Setting range: 0x0000–0x1223 Ones place: Frequency setting selection 0: Both the UP/DOWN key and digital potentiometer can be used for the control. 1: Only the UP/DOWN key can be used for the control. 2: Only the digital potentiometer can be used for the control. 3: Neither the UP/DOWN key nor the digital potentiometer can be used for the control.</p>	0x0000	○

Function code	Name	Description	Default	Modify
		<p>Tens place: Frequency control selection</p> <p>0: Valid only when P00.06=0 or P00.07=0</p> <p>1: Valid for all frequency setting methods</p> <p>2: Invalid for multi-step speed running when multi-step speed running has the priority</p> <p>Hundreds place: Action selection for stop</p> <p>0: Setting is valid.</p> <p>1: Valid during running, cleared after stop</p> <p>2: Valid during running, cleared after a stop command is received</p> <p>Thousands place: Indicates whether to enable the integral function through the UP/DOWN key and digital potentiometer.</p> <p>0: Enable the integral function</p> <p>1: Disable the integral function</p>		
P08.45	LED keypad potentiometer integral rate	Setting range: 0.01–10.00	0.10	<input type="radio"/>
P08.46	UP/DOWN terminal control setting	<p>Setting range: 0x000–0x221</p> <p>Ones place: Frequency setting selection</p> <p>0: The setting made through UP/DOWN is valid.</p> <p>1: The setting made through UP/DOWN is invalid.</p> <p>Tens place: Frequency control selection</p> <p>0: Valid only when P00.06=0 or P00.07=0</p> <p>1: Valid for all frequency setting methods</p> <p>2: Invalid for multi-step speed running when multi-step speed running has the priority</p>	0x000	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Hundreds place: Action selection for stop 0: Setting is valid. 1: Valid during running, cleared after stop 2: Valid during running, cleared after a stop command is received		
P08.47	Frequency increment integral rate of the UP terminal	Setting range: 0.01–50.00Hz/s	0.50	<input type="radio"/>
P08.48	Frequency integral rate of the DOWN terminal	Setting range: 0.01–50.00Hz/s	0.50	<input type="radio"/>
P08.49	Action selection at power-off during frequency setting	Setting range: 0x000–0x111 Ones place: Reserved Action selection at power-off during frequency adjusting through Modbus communication 0: Save the setting at power-off. 1: Clear the setting at power-off. Hundreds place: Reserved	0x000	<input type="radio"/>
P08.50	Initial electricity consumption high bit	Specifies the initial electricity consumption. Initial electricity consumption = $P08.50 \times 1000 + P08.51$ Setting range: 0–59999kWh	0	<input type="radio"/>
P08.51	Initial electricity consumption low bit	Specifies the initial electricity consumption. Initial electricity consumption = $P08.50 \times 1000 + P08.51$ Setting range: 0.0–999.9kWh	0.0	<input type="radio"/>
P08.52	Magnetic flux braking	Used to enable the magnetic flux braking. Magnetic flux braking can be used for motor stop, as well as for motor rotation speed change. The current of the stator other than the rotor increases during magnetic flux braking. Therefore, the cooling is better. 0: Invalid	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		100–300: A greater coefficient indicates greater braking strength. Setting range: 0–300		
P08.53	Magnetic flux braking ratio	Setting range: 5–15	8	<input type="radio"/>
P08.54	Inverter input power factor	Used to adjust the current display value on the AC input side. Setting range: 0.00–1.00	0.56	<input type="radio"/>
P08.55	STO lock selection	Setting range: 0–1 0: Lock upon STO (E40) alarm 1: No lock on STO (E40) alarm Note: "Lock on STO (E40) alarm" indicates the STO alarm must be reset after the inverter recovers from the STO (E40) fault. "No lock on STO (E40) alarm" indicates that the STO alarm disappears automatically after the inverter recovers from the STO fault.	0	<input type="radio"/>
P08.58	Enabling auto carrier frequency reduction	Setting range: 0–1 0: Disable 1: Enable Note: Automatic carrier frequency reduction indicates that the inverter automatically reduces the carrier frequency when detecting the heat sink temperature exceeds the rated temperature. When the temperature decreases to a specified value, the carrier frequency restores to the setting. This function can reduce the inverter overheat alarm reporting chances.	0	<input type="radio"/>
P08.59	Min. carrier frequency	Setting range: 1.0–15.0kHz Note: It is 4k for 220V 5.5kW and lower models; it is 2k for the other models.	Model dependent	<input type="radio"/>
P08.60	Temperature point of auto carrier	Setting range: 40.0–85.0°C	70.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
	frequency reduction			
P08.61	Interval of carrier frequency reduction	Setting range: 0–30s	10	<input type="radio"/>
P08.62	Frequency threshold of the start of droop control	Setting range: 0.00–50.00Hz Note: The droop control function is started when P08.63 is greater than 0.00Hz.	2.00	<input type="radio"/>
P08.63	Frequency decrease ratio in drop control	Specifies the variation rate of the inverter output frequency based on the load. It is mainly used in balancing the power when multiple motors drive the same load. Setting range: 0.00–50.00Hz	0.00	<input type="radio"/>
P08.64	Output current filter time	Setting range: 0.000–10.000s	0.000	<input type="radio"/>
P08.66	DPWM switching threshold frequency	Setting range: 0.0–100.0%	25.0	<input type="radio"/>
P08.67	Random PWM depth	Setting range: 0.0–100.0%	0.0	<input type="radio"/>
P08.69	DC bus voltage sampling delay compensation	Setting range: 0–6000	300	<input type="radio"/>
P08.70	Grid voltage frequency selection	0x00–0x21 Ones place: Frequency selection 0: 50Hz 1: 60Hz Tens place: Voltage selection 0: Indicates the 220V level, suitable for the voltage range of 208–240V 1: Indicates the 380V level, suitable for the voltage range of 380–415V 2: Indicates the 460V level, suitable for the voltage range of 440–480V Note:	0x10	<input type="radio"/>

Function code	Name	Description	Default	Modify
		When the inverter model is -2/S2, the tens place of P08.70 automatically becomes 0, and the other settings (such as 1 and 2) are invalid. When the inverter model is -4, the tens place of P08.70 is 1 by default, and the other settings (such as 0) is invalid.		
P08.77	Deadzone compensation calibration coefficient	Setting range: 0.0–200.0%	100.0	<input type="radio"/>

G.10 Group P09—PID control

Function code	Name	Description	Default	Modify
P09.00	PID reference source selection	Specifies the target given channel during the PID process. Setting range: 0–15 0: Setting through P09.01 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: The set target of process PID is a relative value, for which 100% equals 100% of the feedback signal of the controlled system. The	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		system always calculates a related value (0–100.0%).		
P09.01	PID digital setting	Setting range: -100.0%–100.0%	0.0	<input type="radio"/>
P09.02	PID feedback source selection	<p>Specifies the PID feedback channel.</p> <p>Setting range: 0–15</p> <p>0: Setting through P09.01</p> <p>1: AI1</p> <p>2: AI2</p> <p>3: AI3</p> <p>4: Reserved</p> <p>5: High-speed pulse HDI1</p> <p>6–9: Reserved</p> <p>10: Modbus/Modbus TCP communication</p> <p>11: Reserved</p> <p>12: Ethernet communication</p> <p>13: Reserved</p> <p>14: EtherCAT/PROFINET/EtherNet IP communication</p> <p>15: Reserved</p> <p>Note: The reference channel and feedback channel cannot be duplicated. Otherwise, effective PID control cannot be achieved.</p>	0	<input type="radio"/>
P09.03	PID output characteristics selection	<p>Setting range: 0–1</p> <p>0: PID output is positive. When the feedback signal is greater than the PID reference value, the output frequency of the inverter will decrease to balance the PID.</p> <p>Example: PID control on strain during unwinding.</p> <p>1: PID output is negative. When the feedback signal is greater than the PID reference value, the output frequency of the inverter will increase to balance the PID.</p> <p>Example: PID control on tension during unwinding</p>	0	<input type="radio"/>
P09.04	Low frequency proportional gain (K _p)	Specifies the proportional gain P for the low-frequency range of PID input.	1.00	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Setting range: 0.00–100.00		
P09.05	Low frequency integral time (Ti)	Determines the speed of the PID regulator's integration adjustment to the deviation between the PID feedback and reference in the low-frequency range. Setting range: 0.00–10.00s	0.90	<input type="radio"/>
P09.06	Low frequency differential time (Td)	Determines the strength of the PID regulator's adjustment to the change rate of the deviation between the PID feedback and reference in the low-frequency range. Setting range: 0.00–10.00s	0.00	<input type="radio"/>
P09.07	Low frequency point for PID parameter switching	Setting range: 0.00Hz–P09.11	5.00	<input type="radio"/>
P09.08	High frequency proportional gain (Kp)	Specifies the proportional gain P for the low-frequency range of PID input. Setting range: 0.00–100.00	1.80	<input type="radio"/>
P09.09	High frequency integral time (Ti)	Determines the speed of the PID regulator's integration adjustment to the deviation between the PID feedback and reference in the low-frequency range. Setting range: 0.00–10.00s	0.90	<input type="radio"/>
P09.10	High frequency differential time (Td)	Determines the strength of the PID regulator's adjustment to the change rate of the deviation between the PID feedback and reference in the low-frequency range. Setting range: 0.00–10.00s	0.00	<input type="radio"/>
P09.11	High frequency point for PID parameter switching	Setting range: P09.07–P00.03(Hz)	10.00	<input type="radio"/>
P09.12	Sampling period (T)	Specifies the sampling cycle of feedback. The regulator calculates	0.001	<input type="radio"/>

Function code	Name	Description	Default	Modify
		in each sampling cycle. A longer sampling cycle indicates slower response. Setting range: 0.001–1.000s		
P09.13	PID control deviation limit	Specifies the max. deviation allowed by the output of PID system relative to the closed loop reference, which can adjust the accuracy and stability of the PID system. Setting range: 0.0–100.0%	0.0	<input type="radio"/>
P09.14	PID output upper limit	The function code is used to set the upper limit of PID regulator output values. 100.0% corresponds to the max. output frequency (P00.03) or max. voltage (P04.17). Setting range: P09.15–100.0%	100.0	<input type="radio"/>
P09.15	PID output lower limit	Specifies the lower limit of PID regulator output values. 100.0% corresponds to the max. output frequency (P00.03) or max. voltage (P04.17). Setting range: -100.0%–P09.14	0.0	<input type="radio"/>
P09.16	Feedback offline detection value	Specifies the PID feedback offline detection value. Setting range: 0.0–100.0%	0.0	<input type="radio"/>
P09.17	Feedback offline detection time	Setting range: 0.0–3600.0s	1.0	<input type="radio"/>
P09.18	PID control selection	Setting range: 0x0000–0x1111 Ones place: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens place: 0: Same as the main reference direction 1: Contrary to the main reference direction Hundreds place:	0x0001	<input type="radio"/>

Function code	Name	Description	Default	Modify
		0: Limit as per the max. frequency 1: Limit as per A frequency Thousands place: 0: A+B frequency. acceleration/deceleration of main reference A frequency source pre-charging is invalid. 1: A+B frequency. acceleration/deceleration of main reference A frequency source buffering is valid.		
P09.19	Acceleration/Deceleration time of PID command	Setting range: 0.0–1000.0s	0.0	<input type="radio"/>
P09.20	PID output filter time	Setting range: 0.000–10.000s	0.000	<input type="radio"/>

G.11 Group P10—Simple PLC and multi-step speed control

Function code	Name	Description	Default	Modify
P10.00	Simple PLC mode	Setting range: 0–2 0: Stop after running once. The inverter stops automatically after running for one cycle, and it can be started only after receiving the running command. 1: Keep running in the final value after running for one cycle. The inverter keeps the running frequency and direction of the last section after a single cycle. 2: Cyclic running. The inverter enters the next cycle after completing one cycle until receiving the stop command.	0	<input type="radio"/>
P10.01	Simple PLC memory selection	Setting range: 0–1 0: Do not memorize at power outage 1: Memorize at power outage. The PLC memories its running stage and running frequency before power-off.	0	<input type="radio"/>
P10.02	Multi-step speed 0	Setting range: -300.0%–300.0%	0.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		The setting 100.0% corresponds to the max. output frequency (P00.03).		
P10.03	Running time of step 0	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.04	Multi-step speed 1	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.05	Running time of step 1	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.06	Multi-step speed 2	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.07	Running time of step 2	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.08	Multi-step speed 3	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.09	Running time of step 3	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.10	Multi-step speed 4	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.11	Running time of step 4	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.12	Multi-step speed 5	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.13	Running time of step 5	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.14	Multi-step speed 6	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.15	Running time of step 6	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.16	Multi-step speed 7	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.17	Running time of step 7	Setting range: 0.0–6553.5s(min)	0.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		The time unit is specified by P10.37.		
P10.18	Multi-step speed 8	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.19	Running time of step 8	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.20	Multi-step speed 9	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.21	Running time of step 9	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.22	Multi-step speed 10	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.23	Running time of step 10	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.24	Multi-step speed 11	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.25	Running time of step 11	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.26	Multi-step speed 12	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.27	Running time of step 12	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.28	Multi-step speed 13	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.29	Running time of step 13	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.30	Multi-step speed 14	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0	<input type="radio"/>
P10.31	Running time of step 14	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	<input type="radio"/>
P10.32	Multi-step speed 15	Setting range: -300.0%–300.0%	0.0%	<input type="radio"/>

Function code	Name	Description	Default	Modify
		The setting 100.0% corresponds to the max. output frequency (P00.03).		
P10.33	Running time of step 15	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0	○
P10.34	Acceleration/Deceleration time of steps 0–7 of simple PLC	Setting range: 0x0000–0xFFFF	0x0000	○
P10.35	Acceleration/Deceleration time of steps 8–15 of simple PLC	Setting range: 0x0000–0xFFFF	0x0000	○
P10.36	PLC restart mode	Setting range: 0–1 0: Restart from the first step, namely if the inverter stops during running (caused by stop command, fault or power down), it will run from the first step after restart. 1: Continue running from the step frequency when interruption occurred, namely if the inverter stops during running (caused by stop command or fault), it will record the running time of current step, and enters this step automatically after restart, then continue running at the frequency defined by this step in the remaining time.	0	◎
P10.37	Multi-step running time unit	Setting range: 0–1 0: second; the running time of each step is counted in seconds 1: minute; the running time of each step is counted in minutes	0	◎

G.12 Group P11—Protection parameters

Function code	Name	Description	Default	Modify
P11.00	Protection against phase loss	Setting range: 0x000–0x011 Ones place:	0x011	○

Function code	Name	Description	Default	Modify
		<p>0: Disable software input phase loss protection. 1: Enable software input phase loss protection.</p> <p>Tens place: 0: Disable output phase loss protection. 1: Enable output phase loss protection.</p> <p>Hundreds place: Reserved</p> <p>Note: Even if the ones place is set to 1 for single-phase models, phase loss detection will not occur (refer to P17.68 for the model's single-phase/three-phase attributes). When no motor is connected, output phase loss cannot be detected, and input phase loss cannot be detected during no-load or light-load running.</p>		
P11.01	Frequency drop at transient power-off	<p>Setting range: 0–1 0: Disable 1: Enable</p>	0	<input type="radio"/>
P11.02	Enabling energy-consumption braking for stop	<p>Setting range: 0–1 0: Disable 1: Enable</p>	0	<input checked="" type="radio"/>
P11.03	Overvoltage stall protection	<p>Setting range: 0–1 0: Disable 1: Enable</p>	1	<input type="radio"/>
P11.04	Overvoltage stall protection voltage	380V: 120%–150% (of standard bus voltage)	136	<input type="radio"/>
		220V: 120%–150% (of standard bus voltage)	120	
P11.05	Current limit selection	During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency. To prevent the inverter trip due to overcurrent during acceleration, take the current limit measures.	0x01	<input checked="" type="radio"/>

Function code	Name	Description	Default	Modify
		<p>Setting range: 0x00–0x11</p> <p>Ones place: Current limit action selection</p> <p>0: Invalid</p> <p>1: Always valid</p> <p>Tens: Hardware current limit overload alarm selection</p> <p>0: Valid</p> <p>1: Invalid</p>		
P11.06	Automatic current limit threshold	Setting range: 50.0%–200.0% (of the inverter rated output current)	160.0	◎
P11.07	Frequency decrease ratio in current limiting	Setting range: 0.00–50.00Hz/s	10.00	◎
P11.08	Inverter /motor OL/UL alarm selection	<p>Setting range: 0x0000–0x1132</p> <p>Ones place: Overload/underload (OL/UL) alarm detection method</p> <p>0: Motor OL/UL alarm, relative to the motor rated current.</p> <p>1: Inverter OL/UL alarm, relative to the inverter rated current.</p> <p>2: Motor output torque OL/UL alarm, relative to motor rated torque.</p> <p>Tens place: Action selection upon OL/UL</p> <p>0: The inverter continues to work, while keeping the OL/UL alarm.</p> <p>1: For a UL fault, the inverter continues to work, while keeping the alarm; for an OL fault, it reports the fault and stops.</p> <p>2: For an OL fault, the inverter continues to work, while keeping the alarm; for a UL fault, it reports the fault and stops.</p> <p>3. The inverter stops running for an OL/UL alarm</p> <p>Hundreds place: Detection method</p> <p>0: Always detect</p>	0x0000	○

Function code	Name	Description	Default	Modify
		1: Detect during constant-speed running Thousands place: inverter overload current reference selection 0: Related to current calibration coefficient 1: Irrelated to current calibration coefficient		
P11.09	Underload alarm detection threshold	If the inverter or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection time (P11.10), overload pre-alarm signal will be outputted. Setting range: P11.11–200% (relative value determined by the ones place of P11.08) Note: 120% by default in normal duty mode; 150% by default in heavy duty mode.	Model dependent	<input type="radio"/>
P11.10	Overload alarm detection time	Setting range: 0.1–3600.0s	1.0	<input type="radio"/>
P11.11	Underload alarm detection threshold	Underload pre-alarm signal will be outputted if the output current of the inverter or motor is lower than underload pre-alarm detection level (P11.11), and the duration exceeds underload pre-alarm detection time (P11.12). Setting range: 0%–P11.09 (relative value determined by the ones place of P11.08)	50	<input type="radio"/>
P11.12	Underload alarm detection time	Underload pre-alarm signal will be outputted if the output current of the inverter or motor is lower than underload pre-alarm detection level (P11.11), and the duration exceeds underload pre-alarm detection time (P11.12). Setting range: 0.1–3600.0s	1.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P11.13	Fault output terminal action upon fault occurring	<p>Specifies the action of fault output terminals at undervoltage and fault reset.</p> <p>Setting range: 0x00–0x11</p> <p>Ones place:</p> <p>0: Act at undervoltage</p> <p>1: Do not act at undervoltage</p> <p>Tens place:</p> <p>0: Act during automatic reset</p> <p>1: Do not act during the automatic reset period</p>	0x00	<input type="radio"/>
P11.14	Speed deviation detection value	<p>Specifies the speed deviation detection value.</p> <p>Setting range: 0.0–50.0%</p>	10.0	<input type="radio"/>
P11.15	Speed deviation detection time	<p>Specifies the speed deviation detection time. If the speed deviation detection time is smaller than the set value, the inverter continues running.</p> <p>Setting range: 0.0–10.0s</p> <p>Note: Speed deviation protection is invalid when P11.15 is 0.0.</p>	2.0	<input type="radio"/>
P11.16	Automatic frequency-reduction during voltage drop	<p>Setting range: 0–1</p> <p>0: Invalid</p> <p>1: Enable</p>	0	<input type="radio"/>
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	<p>Specifies the proportional coefficient of the bus voltage regulator during undervoltage stall.</p> <p>Setting range: 0–127</p>	20	<input type="radio"/>
P11.18	Integral coefficient of voltage regulator during undervoltage stall	<p>Specifies the integral coefficient of the bus voltage regulator during undervoltage stall.</p> <p>Setting range: 0–1000</p>	5	<input type="radio"/>
P11.19	Proportional coefficient of current regulator during undervoltage stall	<p>Specifies the proportional coefficient of the active current regulator during undervoltage stall.</p> <p>Setting range: 0–1000</p>	20	<input type="radio"/>

Function code	Name	Description	Default	Modify
P11.20	Integral coefficient of current regulator during undervoltage stall	Specifies the integral coefficient of the active current regulator during undervoltage stall. Setting range: 0–2000	20	○
P11.21	Proportional coefficient of voltage regulator during overvoltage stall	Specifies the proportional coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–127	60	○
P11.22	Integral coefficient of voltage regulator during overvoltage stall	Specifies the integral coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	5	○
P11.23	Proportional coefficient of current regulator during overvoltage stall	Specifies the proportional coefficient of the active current regulator during overvoltage stall. Setting range: 0–1000	60	○
P11.24	Integral coefficient of current regulator during overvoltage stall	Specifies the integral coefficient of the active current regulator during overvoltage stall. Setting range: 0–2000	250	○
P11.25	Inverter overload integral enabling	Setting range: 0–1 0: Disable. The overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter is weakened. 1: Enable. The overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly.	0	◎

Function code	Name	Description	Default	Modify
P11.28	SPO switch-on detection delay time	Setting range: 0.0–60.0s Note: The SPO detection is started only after the inverter runs for the delay time P11.28 to avoid false alarms caused by the unstable frequency.	5.0	<input type="radio"/>
P11.29	SPO imbalance factor	Setting range: 0–10	6	<input type="radio"/>
P11.58	Fire mode function selection	0: Invalid 1: Fire mode 1 2: Fire mode 2 When P11.58=0, fire mode is invalid, normal mode operation, normal shutdown in case of fault. When the fire mode function is valid, the inverter will run at the speed set by P11.64. Select fire mode 1, the inverter will run all the time unless it is damaged. Select fire mode 2, the inverter will run all the time except for OUT1, OUT2, OUT3, OC1, OC2, OC3, OV1, OV2, OV3, SPO fault shutdown; the fire mode function needs to be controlled by terminals, and the DI terminal fire override trigger function can be selected by selecting 82 from P05.01~P05.08.	0	<input type="radio"/>
P11.59	Fire mode running frequency	0.00~P00.03(Hz)	50Hz	<input type="radio"/>
P11.60	Fire mode flag	0~1 When the inverter is running in fire mode and it reaches the alarm condition, this flag is set and the inverter is out of warranty	0	<input checked="" type="radio"/>
P11.63	Software input phase loss detection time	Setting range: 0.500–60.000s	10.000	<input type="radio"/>

Function code	Name	Description	Default	Modify
P11.64	Fire mode frequency source selection	0: Set by P11.59 1: Set by P00.06-P00.09	1	○
P11.67	AI1 disconnection detection threshold	Setting range: 0–100%	0	○
P11.68	AI2 disconnection detection threshold	Setting range: 0–100%	0	○
P11.69	AI3 disconnection detection threshold	Setting range: 0–100%	0	○

G.13 Group P13—SM control

Function code	Name	Description	Default	Modify
P13.00	SM injected-current decrease ratio	Specifies the reduction rate of the input reactive current. When the active current of the synchronous motor increases to some extent, the input reactive current can be reduced to improve the power factor of the motor. Setting range: 0.0–100.0% (of the motor rated current)	80.0	○
P13.01	Initial pole detection method	Setting range: 0–2 0: Do not detect 1: High-frequency superposition 2: Pulse superposition	2	○
P13.02	Pull-in current 1	Specifies the pole position orientation current. It is valid within the lower limit of pull-in current switch-over frequency threshold. If you need to increase the start torque, increase the value of this function parameter properly. Setting range: -100.0%–100.0% Note: The value is relative to the motor rated current.	30.0	○
P13.03	Pull-in current 2	Specifies the pole position orientation current. It is valid within	0.0	○

Function code	Name	Description	Default	Modify
		<p>the upper limit of pull-in current switching frequency threshold. You do not need to change the value in most cases.</p> <p>Setting range: -100.0%–100.0%</p> <p>Note: The value is relative to the motor rated current.</p>		
P13.04	Pull-in current switching frequency	<p>Setting range: 0.0–200.0%</p> <p>Note: The value is relative to the motor rated frequency.</p>	20.0	<input type="radio"/>
P13.06	High-frequency superposition voltage	<p>Specifies the pulse current threshold when the initial magnetic pole position is detected in the pulse mode. The value is a percentage in relative to the rated current of the motor.</p> <p>Setting range: 0.0–300.0%</p> <p>Note: The value is relative to the motor rated voltage.</p>	80.0%	<input type="radio"/>
P13.07	Control parameter 0	Setting range: 0.0–400.0	0.0	<input type="radio"/>
P13.08	Vector control optimization mode	<p>Setting range: 0x0000–0xFFFF</p> <p>Bit 0: SM counter-emf self-adaptation</p> <p>Bit 1–Bit 5: Reserved</p> <p>Bit 6: Stator resistance self-adaptation</p> <p>Bit 7–Bit 15: Reserved</p>	0x0000	<input type="radio"/>
P13.10	Initial compensation angle of SM	Setting range: 0.0–359.9	0.0	<input type="radio"/>
P13.11	Mal-adjustment detection time	<p>Used to adjust the responsiveness of anti-maladjustment function. If the load inertia is large, increase the value of this parameter properly, however, the responsiveness may slow down accordingly.</p> <p>Setting range: 0.0–10.0s</p>	0.5	<input type="radio"/>
P13.12	SM high-frequency	Setting range: 0.0–100.0%	0.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
	compensation coefficient			
P13.14	SVC speed feedback bandwidth	Setting range: 10.0–200.0rad/s	62.5	◎
P13.15	SM counter-emf adaptation bandwidth	Setting range: 0.1–10.0	0.1	○
P13.19	Observer coefficient 1	Setting range: 0–200	2	○
P13.20	Observer coefficient 2	Setting range: 0–200	8	○
P13.21	Observer coefficient 3	Setting range: 0.0–20.0	0.1	○
P13.22	Observer coefficient 4	Setting range: 0.0–500.0	0.0	○
P13.26	Vector control IF enabling	Setting range: 0x0–0x2 Ones place: Enable IF 0: Invalid 1: Valid during acceleration/deceleration 2: Valid only during acceleration	0x0	◎
P13.27	Vector control IF current setting	Setting range: 50.0%–150.0%	100.0	○
P13.28	Vector control IF switch-out frequency point	Setting range: 0.0–100.0%	15.0	○

G.14 Group P14—Serial communication

Function code	Name	Description	Default	Modify
P14.00	Local communication address	Setting range: 1–247 If the slave communication address in the message frame sent from the master is set to 0, it serves as a broadcast communication address. All slaves on the Modbus bus will receive the frame, but the slaves will not respond to it.	1	○

Function code	Name	Description	Default	Modify
		The communication addresses on the communication network are unique, which is the basis of the point-to-point communication. Note: The slave address cannot be set to 0.		
P14.01	Communication baud rate setting	Specifies the data transmission speed between the host controller and the inverter. Setting range: 0–7 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 115200 bps Note: The baud rate set on the inverter must be consistent with that on the host controller. Otherwise, the communication fails. A greater baud rate indicates faster communication.	4	<input type="radio"/>
P14.02	Data bit check	Setting range: 0–5 0: No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check (O, 8, 1) for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU Note: The data format set on the inverter must be consistent with that on the host controller. Otherwise, the communication fails.	1	<input type="radio"/>
P14.03	Communication response delay	Setting range: 0–200ms	5	<input type="radio"/>
P14.04	RS485 communication timeout time	Setting range: 0.0–60.0s Note: When it is set to 0.0, the timeout is invalid.	0.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P14.05	Transmission fault processing	<p>Setting range: 0–3</p> <p>0: Report an alarm and coast to stop</p> <p>1: Keep running without reporting an alarm</p> <p>2: Stop in enabled stop mode without reporting an alarm (applicable only to communication mode)</p> <p>3: Stop in enabled stop mode without reporting an alarm (applicable to any mode)</p>	0	<input type="radio"/>
P14.06	Modbus communication processing action selection	<p>Setting range: 0x0000–0x1111</p> <p>Ones place:</p> <p>0: Respond to write operations</p> <p>1: Not respond to write operations</p> <p>Tens place:</p> <p>0: Communication password protection is invalid.</p> <p>1: Communication password protection is valid.</p> <p>Hundreds place:</p> <p>0: User-defined addresses specified in group P16 are invalid.</p> <p>1: User-defined addresses specified in group P16 are valid.</p> <p>Thousands place:</p> <p>0: CRC failure, with response of error type 0x06</p> <p>1: CRC checksum failure, without response</p>	0x0000	<input type="radio"/>
P14.48	Channel selection for mapping between PZDs and function codes	<p>0x00–0x12</p> <p>Ones place: Channel for mapping function codes to PZDs</p> <p>0: Reserved</p> <p>1: Reserved</p> <p>2: Group P23</p> <p>Tens place: Save function at power off</p> <p>0: Disable</p> <p>1: Enable</p>	0x12	<input type="radio"/>

Function code	Name	Description	Default	Modify
P14.49	Mapped function code of received PZD2	Setting range: 0x0000–0xFFFF	0x0000	○
P14.50	Mapped function code of received PZD3	Setting range: 0x0000–0xFFFF	0x0000	○
P14.51	Mapped function code of received PZD4	Setting range: 0x0000–0xFFFF	0x0000	○
P14.52	Mapped function code of received PZD5	Setting range: 0x0000–0xFFFF	0x0000	○
P14.53	Mapped function code of received PZD6	Setting range: 0x0000–0xFFFF	0x0000	○
P14.54	Mapped function code of received PZD7	Setting range: 0x0000–0xFFFF	0x0000	○
P14.55	Mapped function code of received PZD8	Setting range: 0x0000–0xFFFF	0x0000	○
P14.56	Mapped function code of received PZD9	Setting range: 0x0000–0xFFFF	0x0000	○
P14.57	Mapped function code of received PZD10	Setting range: 0x0000–0xFFFF	0x0000	○
P14.58	Mapped function code of received PZD11	Setting range: 0x0000–0xFFFF	0x0000	○
P14.59	Mapped function code of received PZD12	Setting range: 0x0000–0xFFFF	0x0000	○
P14.60	Mapped function code of sent PZD2	Setting range: 0x0000–0xFFFF	0x0000	○
P14.61	Mapped function code of sent PZD3	Setting range: 0x0000–0xFFFF	0x0000	○
P14.62	Mapped function code of sent PZD4	Setting range: 0x0000–0xFFFF	0x0000	○

Function code	Name	Description	Default	Modify
P14.63	Mapped function code of sent PZD5	Setting range: 0x0000–0xFFFF	0x0000	○
P14.64	Mapped function code of sent PZD6	Setting range: 0x0000–0xFFFF	0x0000	○
P14.65	Mapped function code of sent PZD7	Setting range: 0x0000–0xFFFF	0x0000	○
P14.66	Mapped function code of sent PZD8	Setting range: 0x0000–0xFFFF	0x0000	○
P14.67	Mapped function code of sent PZD9	Setting range: 0x0000–0xFFFF	0x0000	○
P14.68	Mapped function code of sent PZD10	Setting range: 0x0000–0xFFFF	0x0000	○
P14.69	Mapped function code of sent PZD11	Setting range: 0x0000–0xFFFF	0x0000	○
P14.70	Mapped function code of sent PZD12	Setting range: 0x0000–0xFFFF	0x0000	○
P14.71	PZD communication control word expression format	Setting range: 0–1 0: Decimal format 1: Binary format	0	◎
P14.76	Enabling program upgrade	Setting range: 0–2 0: Disable 1: Upgrade main control board 2: Upgrade secondary board 1	0	◎
P14.77	MCU bootload software version	Setting range: 0.00–655.35	0.00	●
P14.78	DSP bootload software version	Setting range: 0.00–655.35	0.00	●
P14.79	Display of no upgrade bootload fault	Setting range: 0–1 0: Display 1: Do not display	0	◎

G.15 Group P16—Customized communication functions

Function code	Name	Description	Default	Modify
P16.00	User-defined read address 1	Setting range: 0x0000–0xFFFF Note: When using the user-defined read/write address, you must set the hundreds place of P14.06.	0xFFFF	◎
P16.01	Local address corresponding to user-defined read address 1	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.02	User-defined read address 2	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.03	Local address corresponding to user-defined read address 2	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.04	User-defined read address 3	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.05	Local address corresponding to user-defined read address 3	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.06	User-defined read address 4	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.07	Local address corresponding to user-defined read address 4	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.08	User-defined read address 5	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.09	Local address corresponding to user-defined read address 5	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.10	User-defined read address 6	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.11	Local address corresponding to user-defined read address 6	Setting range: 0x0000–0xFFFF	0xFFFF	◎

Function code	Name	Description	Default	Modify
P16.12	User-defined read address 7	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.13	Local address corresponding to user-defined read address 7	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.14	User-defined read address 8	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.15	Local address corresponding to user-defined read address 8	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.16	User-defined read address 9	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.17	Local address corresponding to user-defined read address 9	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.18	User-defined read address 10	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.19	Local address corresponding to user-defined read address 10	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.20	User-defined read address 11	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.21	Local address corresponding to user-defined read address 11	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.22	User-defined read address 12	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.23	Local address corresponding to user-defined read address 12	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.24	User-defined read address 13	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.25	Local address corresponding to	Setting range: 0x0000–0xFFFF	0xFFFF	◎

Function code	Name	Description	Default	Modify
	user-defined read address 13			
P16.26	User-defined read address 14	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.27	Local address corresponding to user-defined read address 14	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.28	User-defined read address 15	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.29	Local address corresponding to user-defined read address 15	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.30	User-defined read address 16	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.31	Local address corresponding to user-defined read address 16	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.32	User-defined write address 1	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.33	Local address corresponding to user-defined write address 1	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.34	User-defined write address 2	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.35	Local address corresponding to user-defined write address 2	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.36	User-defined write address 3	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.37	Local address corresponding to user-defined write address 3	Setting range: 0x0000–0xFFFF	0xFFFF	◎

Function code	Name	Description	Default	Modify
P16.38	User-defined write address 4	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.39	Local address corresponding to user-defined write address 4	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.40	User-defined write address 5	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.41	Local address corresponding to user-defined write address 5	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.42	User-defined write address 6	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.43	Local address corresponding to user-defined write address 6	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.44	User-defined write address 7	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.45	Local address corresponding to user-defined write address 7	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.46	User-defined write address 8	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.47	Local address corresponding to user-defined write address 8	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.48	User-defined write address 9	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.49	Local address corresponding to user-defined write address 9	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.50	User-defined write address 10	Setting range: 0x0000–0xFFFF	0xFFFF	◎

Function code	Name	Description	Default	Modify
P16.51	Local address corresponding to user-defined write address 10	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.52	User-defined write address 11	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.53	Local address corresponding to user-defined write address 11	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.54	User-defined write address 12	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.55	Local address corresponding to user-defined write address 12	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.56	User-defined write address 13	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.57	Local address corresponding to user-defined write address 13	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.58	User-defined write address 14	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.59	Local address corresponding to user-defined write address 14	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.60	User-defined write address 15	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.61	Local address corresponding to user-defined write address 15	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.62	User-defined write address 16	Setting range: 0x0000–0xFFFF	0xFFFF	◎
P16.63	Local address corresponding to	Setting range: 0x0000–0xFFFF	0xFFFF	◎

Function code	Name	Description	Default	Modify
	user-defined write address 16			

G.16 Group P17—Status viewing

Function code	Name	Description	Default	Modify
P17.00	Set frequency	Displays the present set frequency of the inverter. Setting range: 0.00Hz–P00.03	0.00	●
P17.01	Output frequency	Displays the present output frequency of the inverter. Setting range: 0.00Hz–P00.03	0.00	●
P17.02	Ramp reference frequency	Displays the present ramp reference frequency of the inverter. Setting range: 0.00Hz–P00.03	0.00	●
P17.03	Output voltage	Displays the present output voltage of the inverter. Setting range: 0–1200V	0	●
P17.04	Output current	Displays the valid value of present output current of the inverter. Setting range: 0.00–500.00A	0.00	●
P17.05	Motor rotation speed	Displays the present motor rotation speed. Setting range: 0–65535RPM	0	●
P17.06	Torque current	Displays the present torque current of the inverter. Setting range: -300.00–300.00A	0.00	●
P17.07	Exciting current	Displays the present exciting current of the inverter. Setting range: -300.00–300.00A	0.00	●
P17.08	Motor power	Displays the present motor power. 100% corresponds to the motor rated power. Setting range: -300.0%–300.0% (of the motor rated frequency)	0.0	●

Function code	Name	Description	Default	Modify
P17.09	Motor output torque	Displays the present output torque of the inverter. 100% corresponds to the motor rated torque. Setting range: -250.0%–250.0%	0.0	●
P17.10	Estimated motor frequency	Used to indicate the estimated motor rotor frequency under the open-loop vector condition. Setting range: 0.00–600.00Hz	0.00	●
P17.11	DC bus voltage	Displays the present DC bus voltage of the inverter. Setting range: 0.0–2000.0V	0.0	●
P17.12	Digital input terminal state	Displays the present digital input terminal state of the inverter. Setting range: 0x000–0x7FF Bit 0: DI1 Bit 1: DI2 Bit 2: DI3 Bit 3: DI4 Bit 4: DI5 Bit 5: DI6 Bit 6: DI7 Bit 7: DI8 Bit 8: Reserved Bit 9: Reserved Bit 10: HDI1	0x000	●
P17.13	Digital output terminal state	Displays the present digital output terminal state of the inverter. Setting range: 0x00–0x1F Bit 0: Reserved Bit 1: Reserved Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1	0x00	●
P17.14	Digital adjustment value	Displays the adjustment on the inverter through the UP/DOWN terminal. Setting range: 0.00–600.00Hz	0.00	●
P17.15	Torque reference value	Indicates the percentage of the rated torque of the present motor, displaying the torque reference.	0.0	●

Function code	Name	Description	Default	Modify
		Setting range: -300.0%–300.0% (of the motor rated current)		
P17.16	Linear speed	Setting range: 0–65535	0	●
P17.17	Drive board type	Setting range: 0x0000–0xFFFF Bit0–bit3: Reserved Bit4–bit11: Chip type and manufacturer 0x00: DSP(TI) 0x01–0xFF: Reserved Bit 12–Bit 15: Reserved 0x0–0xF: Reserved	Model dependent (0x0000)	●
P17.18	Count value	Setting range: 0–65535	0	●
P17.19	AI1 input voltage	Displays the AI1 input signal. When AI1 input is the current input, 0/20mA corresponds to 0/10.00V. Setting range: 0.00–10.00V	0.00	●
P17.20	AI2 input voltage	Displays the AI2 input signal. When AI2 input is the current input, 0/20mA corresponds to -10.00/10.00V. Setting range: 0.00V–10.00V	0.00	●
P17.21	AI3 input voltage	Displays the AI3 input signal. Setting range: 0.00V–10.00V	0.00	●
P17.23	HDI1 input frequency	Displays the HDIA input frequency. Setting range: 0.000–50.000kHz	0.000	●
P17.25	PID reference value	Displays the PID reference value. Setting range: -100.0%–100.0%	0.0	●
P17.26	PID feedback value	Displays the PID feedback value. Setting range: -100.0%–100.0%	0.0	●
P17.27	Motor power factor	Displays the power factor of the present motor. Setting range: -1.00–1.00	0.00	●
P17.28	Duration of this run	Displays the duration of this run of the inverter. Setting range: 0–65535min	0	●
P17.29	Present step of simple PLC	Displays the present step of the simple PLC function. Setting range: 0–15	0	●

Function code	Name	Description	Default	Modify
P17.30	Motor ASR controller Output	Displays the ASR controller output value as a percentage relative to the rated motor torque under the vector control mode. Setting range: -300.0%–300.0%	0.0	●
P17.31	Open-loop SM pole Angle	Displays the initial identification angle of SM. Setting range: 0.0–360.0	0.0	●
P17.32	Phase compensation of SM	Displays the phase compensation of SM. Setting range: -180.0–180.0	0.0	●
P17.34	Motor flux linkage	0.0–200.0%	0.0	●
P17.35	Exciting current reference	Displays the exciting current reference value under the vector control mode. Setting range: -300.00–300.00A	0.00	●
P17.36	Torque current reference	Displays the torque current reference value under the vector control mode. Setting range: -300.00–300.00A	0.00	●
P17.38	Output torque	Displays the output torque value. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state. Setting range: -3000.0–3000.0Nm	0.0	●
P17.39	Motor overload count value	Setting range: 0–65535	0	●
P17.40	Process PID output	Setting range: -100.0%–100.0%	0.0	●
P17.41	Parameter download error Function code	Setting range: 0.00–99.00	0.00	●
P17.42	Motor control mode	Setting range: 0x000–0x122 Ones place: Control mode 0: Vector 0 1: Vector 1	0x000	●

Function code	Name	Description	Default	Modify
		2: V/F control Tens place: Control status 0: Speed control 1: Torque control 2: Reserved Hundreds place: Motor number 0: Motor 1 1: Motor 2		
P17.43	Electromotive torque upper limit	Setting range: 0.0–300.0% (of the motor rated current)	0.0	●
P17.44	Braking torque upper limit	Setting range: 0.0–300.0% (of the motor rated current)	0.0	●
P17.45	Forward rotation upper-limit frequency in torque control	Setting range: 0.00–600.00Hz	0.00	●
P17.46	Reverse rotation upper-limit frequency in torque control	Setting range: 0.00–600.00Hz	0.00	●
P17.47	Inertia compensation torque	Setting range: -100.0%–100.0%	0.0	●
P17.48	Friction compensation torque	Setting range: -100.0%–100.0%	0.0	●
P17.49	Motor pole pairs	Setting range: 0–65535	0	●
P17.50	Inverter overload count value	Setting range: 0–65535	0	●
P17.51	Frequency set by A source	Setting range: 0.00–600.00Hz	0.00	●
P17.52	Frequency set by B source	Setting range: 0.00–600.00Hz	0.00	●
P17.53	PID proportional output	Setting range: -100.0%–100.0%	0.0	●
P17.54	PID integral output	Setting range: -100.0%–100.0%	0.0	●
P17.55	PID differential output	Setting range: -100.0%–100.0%	0.0	●
P17.56	PID present proportional gain	Setting range: 0.00–100.00	0.00	●

Function code	Name	Description	Default	Modify
P17.57	PID present integral gain	Setting range: 0.00–10.00s	0.00	●
P17.58	PID present differential time	Setting range: 0.00–10.00s	0.00	●
P17.59	Actual carrier frequency	Setting range: 0.000–15.000kHz	0.000	●
P17.61	Counter-emf of SM	Setting range: 0–1200V	0V	●
P17.65	Inverter status word 3	Setting range: 0x0000–0xFFFF Bit 0: Running protection flag Bit 1: Running Bit 2: Running direction (1=REV, 0=FWD) Bit 3: Jogging Bit 4: Alarming Bit 5: In fault Bit 6: Running paused Bit 7: In sleep Bit 8: In PoFF state Bit 9: Undervoltage due to transient power loss Bit 10: Overvoltage stall Bit 11: Pre-exciting Bit 12: DC braking Bit 13: Identifying parameters Bit 14: Flux weakening (reserved) Bit 15: Reserved	0x0000	●
P17.66	CPU load rate	Setting range: 0.0–100.0%	0.0	●
P17.67	8k test duration	Setting range: 0–65535	0	●
P17.68	Drive board attribute	Setting range: 0x0000–0xFFFF Bit 0–Bit 3: Power range identifying Bit 4: 1PH/3PH identifying 0: 3PH 1: 1PH Bit 5–Bit 15: Reserved	0x0000	●

G.17 Group P23—Communication expansion function group 1

Function code	Name	Description	Default	Modify
P23.02	Received PZD2	Setting range: 0–31 0: Invalid	0	<input type="radio"/>
P23.03	Received PZD3	1: Set frequency (0–Fmax, unit: 0.01Hz) 2: PID reference (-1000–1000, in which 1000 corresponds to 100.0%)	0	<input type="radio"/>
P23.04	Received PZD4	3: PID feedback (-1000–1000, in which 1000 corresponds to 100.0%)	0	<input type="radio"/>
P23.05	Received PZD5	4: Torque setting (-3000–+3000, in which 1000 corresponds to 100.0% of the motor rated current)	0	<input type="radio"/>
P23.06	Received PZD6	5: Setting of the upper limit of forward running frequency (0–Fmax, unit: 0.01Hz)	0	<input type="radio"/>
P23.07	Received PZD7	6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01Hz)	0	<input type="radio"/>
P23.08	Received PZD8	7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the motor rated current)	0	<input type="radio"/>
P23.09	Received PZD9	8: Upper limit of braking torque (0–3000, in which 1000 corresponds to 100% of the motor rated current)	0	<input type="radio"/>
P23.10	Received PZD10	9: Virtual input terminal command (0x000–0x7FF)	0	<input type="radio"/>
P23.11	Received PZD11	10: Virtual output terminal command (0x000–0x01F)	0	<input type="radio"/>
P23.12	Received PZD12	11: Voltage setting special for V/F separation (0–1000, in which 1000 corresponds to 100.0% of the motor rated voltage) 12: AO setting 1 (0–1000, in which 1000 corresponds to 100.0%) 13: AO setting 2 (-1000–1000, in which 1000 corresponds to 100.0%) 14–18: Reserved	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		19: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) 20–31: Reserved		
P23.13	Sent PZD2	Setting range: 0–32	0	<input type="radio"/>
P23.14	Sent PZD3	0: Invalid	0	<input type="radio"/>
P23.15	Sent PZD4	1: Running frequency (×100, Hz)	0	<input type="radio"/>
P23.16	Sent PZD5	2: Set frequency (×100, Hz)	0	<input type="radio"/>
P23.17	Sent PZD6	3: Bus voltage (×10, V)	0	<input type="radio"/>
P23.18	Sent PZD7	4: Output voltage (×1, V)	0	<input type="radio"/>
P23.19	Sent PZD8	5: Output current (×100, A)	0	<input type="radio"/>
P23.20	Sent PZD9	6: Actual output torque (×10, %)	0	<input type="radio"/>
P23.21	Sent PZD10	7: Actual output power (×10, %)	0	<input type="radio"/>
P23.22	Sent PZD11	8: Rotation speed of running (×1, RPM) 9: Linear speed of running (×1, m/s)	0	<input type="radio"/>
P23.23	Sent PZD12	10: Ramp reference frequency (×100, Hz)	0	<input type="radio"/>
		11: Fault code		
		12: AI1 input (×100, V)		
		13: AI2 input (×100, V)		
		14: AI3 input (×100, V)		
		15: Reserved		
		16: HDI1 frequency value (×100, kHz)		
		17: Reserved		
		18: Terminal input state		
		19: Terminal output status		
		20: PID reference (×100, %)		
		21: PID feedback (×100, %)		
		22–26: Reserved		
		27: Inverter status word 2		
		28–31: Reserved		
		32: Function parameter mapping (PZD2–PZD12 correspond to P14.60–P14.70)		

G.18 Group P24—Communication expansion function group 2

Function code	Name	Description	Default	Modify
P24.00	Expansion card protocol selection	Setting range: 0–15 0: PROFINET 1: EtherCAT 2: Reserved 3: EtherNet IP 4: Modbus TCP 5: EtherNet UDP 6: PROFINET + EtherNet UDP 7: EtherCAT + EtherNet UDP 8–14: Reserved 15: No communication expansion card	0	◎
P24.02	Ethernet monitoring card IP address 1	Setting range: 0–255	192	◎
P24.03	Ethernet monitoring card IP address 2	Setting range: 0–255	168	◎
P24.04	Ethernet monitoring card IP address 3	Setting range: 0–255	0	◎
P24.05	Ethernet monitoring card IP address 4	Setting range: 0–255	1	◎
P24.06	Ethernet monitoring card subnet mask 1	Setting range: 0–255	255	◎
P24.07	Ethernet monitoring card subnet mask 2	Setting range: 0–255	255	◎
P24.08	Ethernet monitoring card subnet mask 3	Setting range: 0–255	255	◎
P24.09	Ethernet monitoring card subnet mask 4	Setting range: 0–255	0	◎
P24.14	Ethernet card monitoring variable address 1	Setting range: 0x0000–0xFFFF	0x0000	○

Function code	Name	Description	Default	Modify
P24.15	Ethernet card monitoring variable address 2	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.16	Ethernet card monitoring variable address 3	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.17	Ethernet card monitoring variable address 4	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.18	Ethernet card monitoring variable address 5	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.19	Ethernet card monitoring variable address 6	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.20	Ethernet card monitoring variable address 7	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.21	Ethernet card monitoring variable address 8	Setting range: 0x0000–0xFFFF	0x0000	<input type="radio"/>
P24.24	Time to identify expansion card	Setting range: 0.0–600.0s Note: The function is invalid when the value is 0.0.	0.0	<input type="radio"/>
P24.27	Expansion card communication timeout time	Setting range: 0.0–600.0s Note: The function is invalid when the value is 0.0.	0.0	<input type="radio"/>
P24.30	EtherCAT communication timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0	<input type="radio"/>
P24.31	PROFINET communication timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0	<input type="radio"/>
P24.32	EtherNet IP communication timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0	<input type="radio"/>
P24.34	Modbus TCP communication timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P24.37	Industrial Ethernet communication card IP address 1	Setting range: 0–255	192	◎
P24.38	Industrial Ethernet communication card IP address 2	Setting range: 0–255	168	◎
P24.39	Industrial Ethernet communication card IP address 3	Setting range: 0–255	0	◎
P24.40	Industrial Ethernet communication card IP address 4	Setting range: 0–255	20	◎
P24.41	Industrial Ethernet communication card subnet mask 1	Setting range: 0–255	255	◎
P24.42	Industrial Ethernet communication card subnet mask 2	Setting range: 0–255	255	◎
P24.43	Industrial Ethernet communication card subnet mask 3	Setting range: 0–255	255	◎
P24.44	Industrial Ethernet communication card subnet mask 4	Setting range: 0–255	0	◎
P24.49	Saving EtherCAT written function codes	Setting range: 0–1 0: No 1: Yes	0	○
P24.50	EtherCAT DC synchronization cycle	Setting range: 0–5 0: Reserved 1: Reserved 2: 1ms 3: 2ms 4: 4ms 5: 8ms	0	○

Function code	Name	Description	Default	Modify
P24.51	EtherCAT slave node address	Setting range: 0x0000–0xFFFF	0xFFFF	<input type="radio"/>

G.19 Group P29—Expansion card status viewing

Function code	Name	Description	Default	Modify
P29.00	Expansion card type	Setting range: 0–63 0: No card 1–35: Reserved 36: All-in-one expansion card—PROFINET communication card 37–40: Reserved 41: All-in-one expansion card—EtherCAT communication card 42: Reserved 43: All-in-one expansion card—EtherNet IP communication card 44: All-in-one expansion card—Modbus TCP communication card 45: All-in-one expansion card—Ethernet communication card 46: All-in-one expansion card—PROFINET + Ethernet communication card 47: All-in-one expansion card—EtherCAT + Ethernet communication card 48–63: Reserved	0	<input checked="" type="radio"/>
P29.03	Expansion card software version	Setting range: 0.00–655.35	0.00	<input checked="" type="radio"/>
P29.17	Present value of Ethernet monitoring variable 1	Setting range: 0–65535 Note: Monitoring variables 1–4 are used for the control board.	0	<input checked="" type="radio"/>
P29.18	Present value of Ethernet monitoring variable 2	Setting range: 0–65535	0	<input checked="" type="radio"/>
P29.19	Present value of Ethernet	Setting range: 0–65535	0	<input checked="" type="radio"/>

Function code	Name	Description	Default	Modify
	monitoring variable 3			
P29.20	Present value of Ethernet monitoring variable 4	Setting range: 0–65535	0	●
P29.21	Present value of Ethernet monitoring variable 5	Setting range: 0–65535 Note: Monitoring variable 5–8 are used for the drive board.	0	●
P29.22	Present value of Ethernet monitoring variable 6	Setting range: 0–65535	0	●
P29.23	Present value of Ethernet monitoring variable 7	Setting range: 0–65535	0	●
P29.24	Present value of Ethernet monitoring variable 8	Setting range: 0–65535	0	●
P29.32	EtherCAT control word	Setting range: 0x0000–0xFFFF	0x0000	●
P29.33	EtherCAT status word	Setting range: 0x0000–0xFFFF	0x0000	●

G.20 Group P34—Parameters of motor 2

Function code	Name	Description	Default	Modify
P34.00	Type of motor 2	Setting range: 0–1 0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor	0	◎
P34.01	Rated power of AM 2	Setting range: 0.1–3000.0kW	Model dependent	◎
P34.02	Rated frequency of AM 2	Setting range: 0.01Hz–P00.03	50.00	◎
P34.03	Rated speed of AM 2	Setting range: 1–60000RPM	Model dependent	◎

Function code	Name	Description	Default	Modify
P34.04	Rated voltage of AM 2	Setting range: 0–1200V	Model dependent	◎
P34.05	Rated current of AM 2	Setting range: 0.08–600.00A	Model dependent	◎
P34.06	Stator resistance of AM 2	Setting range: 0.001–65.535Ω	Model dependent	○
P34.07	Rotor resistance of AM 2	Setting range: 0.001–65.535Ω	Model dependent	○
P34.08	Leakage inductance of AM 2	Setting range: 0.1–6553.5mH	Model dependent	○
P34.09	Mutual inductance of AM 2	Setting range: 0.1–6553.5mH	Model dependent	○
P34.10	No-load current of AM 2	Setting range: 0.01–655.35A	Model dependent	○
P34.11	Magnetic saturation coefficient 1 of iron core of AM 2	Setting range: 0.0–100.0%	80.0	○
P34.12	Magnetic saturation coefficient 2 of iron core of AM 2	Setting range: 0.0–100.0%	68.0	○
P34.13	Magnetic saturation coefficient 3 of iron core of AM 2	Setting range: 0.0–100.0%	57.0	○
P34.14	Magnetic saturation coefficient 4 of iron core of AM 2	Setting range: 0.0–100.0%	40.0	○
P34.15	Rated power of SM 2	Setting range: 0.1–3000.0kW	Model dependent	◎
P34.16	Rated frequency of SM 2	Setting range: 0.01Hz–P00.03	50.00	◎
P34.17	Number of pole pairs of SM 2	Setting range: 1–128	2	◎
P34.18	Rated voltage of SM 2	Setting range: 0–1200V	Model dependent	◎

Function code	Name	Description	Default	Modify
P34.19	Rated current of SM 2	Setting range: 0.08–600.00A	Model dependent	◎
P34.20	Stator resistance of SM 2	Setting range: 0.001–65.535Ω	Model dependent	○
P34.21	Direct-axis inductance of SM 2	Setting range: 0.01–655.35mH	Model dependent	○
P34.22	Quadrature-axis inductance of SM 2	Setting range: 0.01–655.35mH	Model dependent	○
P34.23	Counter-emf constant of SM 2	Setting range: 0–10000	300	○
P34.24	Initial pole position of SM 2	Setting range: 0x0000–0xFFFF	0x0000	●
P34.25	Frequency percentage for SM 2 counter-emf identifying	Setting range: 5.0%–100.0%	60	◎
P34.26	Overload protection selection of motor 2	Setting range: 0–2 0: No protection 1: Common motor (with low-speed compensation) As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30Hz. 2: Frequency-variable motor (without low-speed compensation) The heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, and therefore it is not necessary to adjust the protection value at low speed running.	2	◎
P34.27	Overload protection coefficient of motor 2	Used to set the motor overload protection coefficient P. The P value determines the motor overload capability: a lower P	100.0	○

Function code	Name	Description	Default	Modify
		<p>value reduces the overload capability, while a higher P value increases the overload capability. The motor overload multiple M and the overload protection coefficient P determine the motor overload protection behavior:</p> <ul style="list-style-type: none"> • $M = 116\% * P \rightarrow$ protection after 1 hour of overload • $M = 150\% * P \rightarrow$ protection after 12 minutes • $M = 180\% * P \rightarrow$ protection after 5 minutes • $M = 200\% * P \rightarrow$ protection after 60 seconds • $M \geq 400\% * P \rightarrow$ protection is immediate <p>Setting range: 20.0%–150.0%</p>		
P34.28	Power display calibration coefficient of motor 2	Used to adjust the power display value of motor 1. However, it does not affect the control performance of the inverter. Setting range: 0.00–3.00	1.00	<input type="radio"/>
P34.29	Parameter display selection of motor 2	<p>Setting range: 0–1</p> <p>0: Display by motor type. In this mode, only parameters related to the present motor type are displayed.</p> <p>1: Display all. In this mode, all the motor parameters are displayed.</p>	0	<input type="radio"/>
P34.30	System inertia of motor 2	Setting range: 0.001–65.535 kg·m ²	0.001	<input type="radio"/>
P34.31	Parameter model calculation of motor 2	<p>Setting range: 0–1</p> <p>0: Disable</p> <p>1: Enable</p>	0	<input type="radio"/>
P34.32	Power factor of AM 2	Setting range: 0.00–1.00	0.85	<input type="radio"/>
P34.33	High word of rated speed of AM 2	Setting range: 0–3010kRPM	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P34.34	AM2 iron core saturation coefficient 1	Setting range: 0.0–200.0%	125.0	<input type="radio"/>
P34.35	Iron core saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	125.0	<input type="radio"/>
P34.36	AM2 mutual inductance saturation coefficient 1	Setting range: 0.0–200.0%	88.0	<input type="radio"/>
P34.37	Mutual inductance saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	88.0	<input type="radio"/>
P34.38	Mutual inductance flux weakening coefficient 1 of AM 2	Setting range: 0.0–200.0%	112.5	<input type="radio"/>
P34.39	Mutual inductance flux weakening coefficient 2 of AM 2	Setting range: 0.0–200.0%	117.6	<input type="radio"/>
P34.40	Mutual inductance flux weakening coefficient 3 of AM 2	Setting range: 0.0–200.0%	122.8	<input type="radio"/>
P34.41	Mutual inductance flux weakening coefficient 4 of AM 2	Setting range: 0.0–200.0%	125.0	<input type="radio"/>

G.21 Group P35—Vector control of motor 2

Function code	Name	Description	Default	Modify
P35.00	Speed-loop proportional gain 1 of motor 2	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P35.01	Speed-loop integral time 1 of motor 2	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200	<input type="radio"/>
P35.02	Motor 2 switching low-point frequency	Setting range: 0.00Hz–P03.05 Note: Applicable only to vector control mode.	5.00	<input type="radio"/>
P35.03	Speed-loop proportional gain 2 of motor 2	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	<input type="radio"/>
P35.04	Speed-loop integral time 2 of motor 2	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200	<input type="radio"/>
P35.05	Switching high-point frequency of motor 2	Setting range: P03.02–P00.03(Hz) Note: Applicable only to vector control mode.	10.00	<input type="radio"/>
P35.06	Speed-loop output filter of motor 2	Setting range: 0–8 (corresponding to 0– $2^8/10\text{ms}$)	0	<input type="radio"/>
P35.07	Electromotive slip compensation coefficient of vector control for motor 2	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100	<input type="radio"/>
P35.08	Braking slip compensation coefficient of vector control for motor 2	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100	<input type="radio"/>
P35.11	Torque setting method selection of motor 2	Setting range: 0–15 0: Set by P35.12 1: AI1 2: AI2 3: AI3 4: Reserved	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		<p>5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved</p> <p>Note: 100% corresponds to the motor rated current.</p>		
P35.12	Torque set through keypad of motor 2	<p>Setting range: -300.0%–300.0%</p> <p>Note: The value is relative to the motor rated current.</p>	20.0	<input type="radio"/>
P35.13	Torque reference filter time of motor 2	Setting range: 0.000–10.000s	0.010	<input type="radio"/>
P35.14	Setting source of forward rotation frequency upper limit in torque control of motor 2	<p>Setting range: 0–15</p> <p>0: Set by P35.16 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved</p>	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Note: For setting 1 and above, 100% corresponds to the max. frequency.		
P35.15	Setting source of reverse rotation frequency upper limit in torque control of motor 2	Setting range: 0–6 0: Set by P35.17 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.	0	<input type="radio"/>
P35.16	Forward rotation frequency upper limit set through keypad in torque control of motor 2	Specifies the frequency limit when P03.14=0. Setting range: 0.00Hz–P00.03	50.00	<input type="radio"/>
P35.17	Reverse rotation frequency upper limit set through keypad in torque control of motor 2	Specifies the frequency limit when P35.15=0. Setting range: 0.00Hz–P00.03	50.00	<input type="radio"/>
P35.18	Setting source of electromotive torque upper limit for motor 2	Setting range: 0–15 0: Set by P35.20 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.		
P35.19	Setting source of braking torque upper limit for motor 2	Setting range: 0–15 0: Set by P35.21 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.	0	<input type="radio"/>
P35.20	Electromotive torque upper limit set through keypad for motor 2	Specifies the torque limit when P03.18=0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0	<input type="radio"/>
P35.21	Braking torque upper limit set through keypad for motor 2	Specifies the torque limit when P03.19=0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P35.22	Weakening coefficient in constant power zone for motor 2	Used when the AM is in flux-weakening control. Setting range: 0.0–200.0%	100.0	<input type="radio"/>
P35.23	Lowest weakening point in constant power zone for motor 2	Setting range: 5%–100%	5	<input type="radio"/>
P35.24	Max. voltage limit on motor 2	Specifies the max. inverter output voltage, which is a percentage of the motor rated voltage. Set the value according to onsite conditions. Setting range: 0.0–120.0%	100.0	<input type="radio"/>
P35.25	Pre-exciting time of motor 2	Specifies the pre-exciting time. Pre-exciting is performed for the motor when the inverter starts up. A magnetic field is built up inside the motor to improve the torque performance during the start process. Setting range: 0.000–10.000s Note: Pre-excitation can improve the start-up capability of AM with loads. For an AM, set 0 to disable the pre-excitation process. For an SM, if P13.01 is set to an enabling option, the pre-excitation process is directly skipped.	0.300	<input type="radio"/>
P35.26	Flux-weakening proportional gain of motor 2	Setting range: 0–8000	1000	<input type="radio"/>
P35.27	Speed display selection in vector control for motor 2	Setting range: 0–1 0: Display the actual value 1: Display the set value	0	<input type="radio"/>
P35.28	Static friction compensation coefficient of motor 2	Setting range: 0.0–100.0%	0.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P35.29	Static friction corresponding frequency point of motor 2	Setting range: 0.50Hz–P35.31	1.00	○
P35.30	High speed friction compensation coefficient of motor 2	Setting range: 0.0–100.0%	0.0	○
P35.31	High speed friction corresponding frequency point of motor 2	Setting range: P35.29–P00.03(Hz)	50.00	○
P35.32	Enabling torque control of motor 2	Setting range: 0–1 0: Disable 1: Enable	0	○
P35.33	Flux-weakening integral gain of motor 2	Setting range: 0.0–300.0%	30.0	○
P35.35	Control mode optimization selection of motor 2	Setting range: 0x0000–0x1111 Ones place: Torque command selection 0: Torque current reference 1: Torque current reference Tens place: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved	0x0000	○
P35.36	Speed-loop differential gain of motor 2	Setting range: 0.00–10.00s	0.00	○
P35.43	Motor 2 inertia identification torque	0.0–100.0%	10.0	○
P35.44	Enabling motor 2 inertia identification	0–1 0: Disable 1: Enable	0	◎

Function code	Name	Description	Default	Modify
P35.45	Max. flux weakening current of SM 2	Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated current.	100.0	◎
P35.46	Vector control optimization parameter of motor 2	Setting range: 0x0000–0x1FFF Bit 0–Bit 2: Reserved Bit 3: Enable closed-loop disturbance feedforward compensation Bit 4: Axis-q voltage restriction selection 0: Restricted to 1.2 times the motor rated voltage 1: Restricted to axis-d voltage Bit 5: Mutual inductance self-adaptation enabling 0: Invalid 1: Enable Bit 6: Direct-axis inductance (L_d) saturation enabling 0: Invalid 1: Enable (suitable for synchronous reluctance motors or synchronous motors where inductance varies significantly with current) Bit 7: Quadrature-axis inductance (L_q) saturation enabling 0: Invalid 1: Enable (suitable for synchronous reluctance motors or synchronous motors where inductance varies significantly with current) Bit 8: Torque control current optimization enabling 0: Invalid 1: Enable (suitable for low torque tension control applications) Bit 9: Current loop optimization enabling 0: Invalid 1: Enable (suitable for low carrier frequency ratio applications)	0x0037	◎

Function code	Name	Description	Default	Modify
		Bit 10: Speed loop optimization enabling 0: Invalid 1: Enable (requiring inertia identification) Bit 11–Bit 15: Reserved		
P35.49	Closed-loop speed observation band width of motor 2	Setting range: 1.0–200.0	10.0	<input type="radio"/>
P35.50	Vector control energy-saving mode selection of motor 2	Setting range: 0–3 0: Invalid 1: Max. efficiency (recommended) 2: Optimal power factor 3: MTPA	0	<input type="radio"/>
P35.51	Energy-saving optimization coefficient of motor 2	Setting range: 25.0%–400.0%	100.0	<input type="radio"/>
P35.54	Current-loop band width of motor 2	Setting range: 0–2000 Note: <ul style="list-style-type: none">P35.54 is a current loop PI regulation parameter. It impacts the dynamic response speed and control accuracy of the system. Generally, you do not need to modify it.Applicable to SVC 0 (P00.00=0) and SVC 1 (P00.00=1).	400	<input type="radio"/>
P35.58	Quick exciting current of motor 2	0.0–200.0%	0.0	<input type="radio"/>
P35.65	Current-loop integral coefficient after autotuning of motor 2	Setting range: 0–65535	0	<input type="radio"/>
P35.68	Upper limit frequency bias value in torque control of motor 2	Setting range: 0.00Hz–P00.03	0.00	<input type="radio"/>
P35.69	Upper limit frequency acceleration/decel	Setting range: 0–4 0: No limit on acceleration or deceleration	0	<input type="radio"/>

Function code	Name	Description	Default	Modify
	eration selection in torque control of motor 2	1: Acceleration/Deceleration time 1 2: Acceleration/Deceleration time 2 3: Acceleration/Deceleration time 3 4: Acceleration/Deceleration time 4		

G.22 Group P36—V/F control of motor 2

Function code	Name	Description	Default	Modify
P36.00	V/F curve setting of motor 2	<p>Specifies the V/F curve of motor 1 to meet the needs of different loads.</p> <p>Setting range: 0–5</p> <p>0: Straight-line V/F curve, applicable to constant torque loads</p> <p>1: Multi-point V/F curve</p> <p>2: Torque-down V/F curve (power of 1.3)</p> <p>3: Torque-down V/F curve (power of 1.7)</p> <p>4: Torque-down V/F curve (power of 2.0)</p> <p>Curves 2–4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance.</p> <p>5: Customized V/F (V/F separation); in this mode, V can be separated from F and F can be adjusted through the frequency setting channel set by P00.06 or the voltage setting channel set by P36.13 to change the characteristics of the curve.</p>	0	◎
P36.01	Torque boost of motor 2	<p>Setting range: 0.0–10.0%</p> <p>Note: 100% corresponds to the rated voltage of motor 1. When the value is set to 0.0%, the inverter uses automatic torque boost.</p>	0.0	○

Function code	Name	Description	Default	Modify
P36.02	Torque boost cut-off of motor 2	Setting range: 0.0–50.0% Note: 100% corresponds to the rated frequency of motor 1.	20.0	<input type="radio"/>
P36.03	V/F frequency point 1 of motor 2	When P36.00=1 (multi-dot V/F curve), you can set the V/F curve through P36.03–P36.08. Setting range: 0.00–P36.05(Hz) Note: $V1 \leq V2 \leq V3, f1 \leq f2 \leq f3$ Too high voltage for low frequency will cause motor overheat or damage and cause inverter overcurrent stall or overcurrent protection.	0.00	<input type="radio"/>
P36.04	V/F voltage point 1 of motor 2	Setting range: 0.0–110.0% Note: See the description for P36.03. 100% corresponds to the rated voltage of motor 1.	0.0	<input type="radio"/>
P36.05	V/F frequency point 2 of motor 2	Setting - for P36.03.	0.00	<input type="radio"/>
P36.06	V/F voltage point 2 of motor 2	Setting range: 0.0–110.0% Note: See the description for P36.03. 100% corresponds to the rated voltage of motor 1.	0.0	<input type="radio"/>
P36.07	V/F frequency point 3 of motor 2	Setting range: P36.05–P34.02 (Hz, Rated frequency of AM 2) or P36.05–P34.16 (Hz, Rated frequency of SM 2) Note: See the description for P36.03.	0.00	<input type="radio"/>
P36.08	V/F voltage point 3 of motor 2	Setting range: 0.0–110.0% Note: See the description for P36.03. 100% corresponds to the rated voltage of motor 1.	0.0	<input type="radio"/>
P36.09	V/F slip compensation gain of motor 2	Used to compensate for the motor rotating speed change caused by load change in the V/F mode, and thus improve the rigidity of the mechanical characteristics of the motor. Setting range: 0.0–200.0%	100.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
P36.10	Low-frequency oscillation control factor of motor 2	In V/F control mode, the motor, especially the large-power motor, may experience current oscillation at certain frequencies, which may cause unstable motor running, or even inverter overcurrent. You can adjust the two function parameters properly to eliminate such phenomenon. Setting range: 0–100	10	<input type="radio"/>
P36.11	High-frequency oscillation control factor of motor 2		10	<input type="radio"/>
P36.12	Oscillation control threshold of motor 2	Setting range: 0.00Hz–P00.03	30.00	<input type="radio"/>
P36.13	Voltage setting channel selection for motor 2	Setting range: 0–7 0: Set by P36.14 1: AI1 2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved	0	<input type="radio"/>
P36.14	Voltage set through keypad for motor 2	The function code is the voltage digital setting when "keypad" is selected as the voltage setting channel. Setting range: 0.0–100.0%	100.0	<input type="radio"/>
P36.15	Voltage increase time of motor 2	Voltage increase time means the time needed for the inverter to accelerate from min. output voltage to the max. output frequency.	5.0	<input type="radio"/>

Function code	Name	Description	Default	Modify
		Setting range: 0.0–3600.0s		
P36.16	Voltage decrease time of motor 2	Voltage decrease time means the time needed for the inverter to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0–3600.0s	5.0	○
P36.17	Max. output voltage of motor 2	Specifies the upper limit of output voltage. Setting range: P36.18–100.0% Note: 100% corresponds to the motor rated voltage.	100.0	◎
P36.18	Min. output voltage of motor 2	Specifies the lower limit of output voltage. Setting range: 0.0%–P36.17 Note: 100% corresponds to the motor rated voltage.	0.0	◎
P36.19	Weakening coefficient in constant power zone for motor 2	Setting range: 1.00–1.30	1.00	○
P36.20	Pull-in current 1 in V/F control for SM 2	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by P36.22. Setting range: -100.0%–100.0% Note: 100% corresponds to the motor rated current.	30.0	○
P36.21	Pull-in current 2 in V/F control for SM 2	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is greater than the frequency specified by P36.22. Setting range: -100.0%–100.0% Note: 100% corresponds to the motor rated current.	10.0	○
P36.22	V/F control pull-in current frequency switching point for SM 2	When the SM VF control mode is enabled, the function code is used to set the frequency threshold for	20.0	○

Function code	Name	Description	Default	Modify
		the switching between pull-in current 1 and pull-in current 2. Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated frequency.		
P36.23	Reactive current closed-loop proportional coefficient in V/F control for SM 2	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control. Setting range: 0–500	50	<input type="radio"/>
P36.24	V/F control reactive current closed-loop integral time for SM 2	When the SM VF control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control. Setting range: 0–300	30	<input type="radio"/>
P36.25	V/F control reactive closed-loop output limit for SM 2	Setting range: 0–16000	8000	<input type="radio"/>
P36.26	Enabling IF mode for AM 2	Setting range: 0–1	0	<input type="radio"/>
P36.27	Current setting in IF mode for AM 2	Setting range: 0.0–200.0%	120.0	<input type="radio"/>
P36.28	Proportional coefficient in IF mode for AM 2	Setting range: 0–5000	350	<input type="radio"/>
P36.29	Integral coefficient in IF mode for AM 2	Setting range: 0–5000	150	<input type="radio"/>
P36.30	Frequency threshold for switching off IF mode for motor 2	Setting range: 0.00Hz–P36.31	10.00	<input type="radio"/>
P36.31	End frequency point for switching off IF mode for motor 2	Setting range: P36.30–P00.03(Hz)	25.00	<input type="radio"/>
P36.32	V/F control energy-saving mode selection for AM 2	Setting range: 0–3 0: Disable (Energy saving is invalid) 1: Max. efficiency	0	<input checked="" type="radio"/>

Function code	Name	Description	Default	Modify
		2: Optimal power factor 3: Max. ratio of torque to current		
P36.33	V/F control energy-saving optimization coefficient for AM 2	Setting range: 25.0%–400.0%	100.0	<input type="radio"/>

Further Information

Product and Service Inquiries

Please address any inquiries about the product to local IMO offices, quoting the model designation and serial number in question. Visit www.imopc.com to obtain IMO sales, support, and service contact information.

Feedback on IMO Inverter Manuals

Your comments on our manuals are welcome. Go to www.imopc.com, and directly contact online service personnel or choose Contact Us to obtain contact information.

Documents on the Internet

You can find manuals and other product documents in PDF format on the Internet. Go to www.imopc.com and choose Support > Download.